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ABSTRACT
Identifying malicious web sites has become a major chal-

lenge in today’s Internet. Previous work focused on detecting
if a web site is malicious by dynamically executing JavaScript
in instrumented environments or by rendering web sites in
client honeypots. Both techniques bear a significant evaluation
overhead, since the analysis can take up to tens of seconds or
even minutes per sample.

In this paper, we introduce a novel, purely static analy-
sis approach, the ∆-system, that (i) extracts change-related
features between two versions of the same website, (ii) uses
a machine-learning algorithm to derive a model of web site
changes, (iii) detects if a change was malicious or benign, (iv)
identifies the underlying infection vector campaign based on
clustering, and (iv) generates an identifying signature.

We demonstrate the effectiveness of the ∆-system by eval-
uating it on a dataset of over 26 million pairs of web sites by
running next to a web crawler for a period of four months. Over
this time span, the ∆-system successfully identified previously
unknown infection campaigns. Including a campaign that
targeted installations of the Discuz!X Internet forum software
by injecting infection vectors into these forums and redirecting
forum readers to an installation of the Cool Exploit Kit.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-

eral—Security and protection; D.4.6 [Software Engineer-
ing]: Security and Protection—Invasive software (malware);
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering, Information filtering, Se-
lection process

Keywords
computer security; web-based malware; malware detection;

infection vector identification; infection campaigns; clustering;
trend detection; web dynamics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CCS’13, November 4–8, 2013, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2477-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2508859.2516725.

1 INTRODUCTION
The rapid growth and widespread access to the Internet, and

the ubiquity of web-based services make it easy to communicate
and interact globally. However, the software used to implement
the functionality of web sites is often vulnerable to different
attack vectors, such as cross-site scripting or SQL injections,
and access policies might not be properly implemented. An
attacker can exploit these server-side vulnerabilities to inject
malicious code snippets, called infection vectors, which, in turn,
attack visitors through drive-by install or download attacks.
Drive-by install and download attacks try to exploit client-side
vulnerabilities to download or install malware, or lure the user
into installing malware. If an attacker finds a server-side vul-
nerability that affects multiple web sites (possibly thousands),
he can automate the exploitation, search for other vulnerable
web sites, and launch a carefully crafted infection campaign
in order to maximize the number of potential victims.

Recent reports by the security company Sophos [1, 2] show
that in 2012 over 80% of all web sites attacking users were in-
fected legitimate web sites, such as those of trade associations,
nightclubs, television companies or elementary schools. All of
these web sites had been altered, in one way or another, to at-
tack visitors. In another case, in early 2013, web sites hosting
documentation for software developers were modified to serve
carefully crafted infection vectors that exploited client-side
vulnerabilities, which were then leveraged as the first stepping
stone in sophisticated attacks against Twitter [3], Facebook’s
engineering team [4], and Apple [5].

Major challenges in detecting infection vectors are that web
sites become more and more dynamic and that their static
content changes regularly, i.e., the underlying infection vec-
tor might not be clearly visible to analysis tools, or even to
well-trained human security analysts. Adding new content to
the web site, showing different, personalized advertisements,
or even comments left by visitors are legitimate modifica-
tions. Yet, these modifications force the user to reevaluate
the maliciousness of the web site, either through an automatic
detection system or by manually inspecting any new content
prior to its inclusion into the web site. Unwanted modifications
to a web site on the other hand, i.e., changes from which a user
might want himself to be protected, include defacements or the
insertion of exploit code to infect visitors of the web site with
malware. Previous work in the area of web evolution [6–10]
suggests that web sites do not change randomly, but that they
evolve constantly through small changes, and, if one takes into
account personalized advertisements, a change might happen
at every visit, which, in turn, makes it necessary to analyze
the web sites on each visit.
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The current state of the art in protecting a user from ma-
licious content is mainly realized through blacklists, which are
queried before the web site is rendered or retrieved by the
web browser. The Google Safe Browsing list [11] is likely the
most prominent example. By definition, blacklists are reactive,
which is an undesirable property for any protection mechanism
because a malicious web site can potentially stay undetected
for an extended period of time. Once a web site is blacklisted,
its operator must go to great lengths to remove his/her web site
from the blacklist, although it might have become benign. Such
a removal process can take a frustrating amount of time since
it is often subject to some form of verification that the web site
is now benign, a process that might not happen immediately.
More important, however, is that each web site infected as part
as an infection campaign needs to be identified and added to the
blacklist even though the web sites attack visitors in the same,
well-known way. Clearly, a proactive approach is preferable
for both unknown and known infection vectors. On the other
hand, scanning a web site proactively with online analyzer sys-
tems [12–14] is computationally very expensive, and would in-
troduce delays up to multiple seconds per web site. Since such
a delay is undesirable, it is unlikely that such a proactive ap-
proach would be deployed in a general setting, or that it would
find its way into current browsers as a protection mechanism.

It is important to mention that, generally, the same infection
vector is reused by an attacker and spread among a multitude of
different web sites to maximize its impact; however, some parts
of the infection vector might be randomized. Often, the in-
fected web sites are from a single community, e.g., in a targeted
attack on this community, they employ the same underlying
software stack, or they share a web server that was attacked.
Recent examples include attacks targeting installations of the
Apache web server to replace the web server’s executable with
the backdoor “Linux/Cdorked.A” [15,16], which injects code
to redirect visitors of the web site to exploit pages. These com-
promised web sites are not necessarily targeted, they usually
follow a simple pattern: the infection vector was inserted in the
same or in a very similar way. Be it, as previously mentioned,
through improper access control, exploited vulnerabilities in a
web framework or application used by all web sites. Being able
to identify an infection vector, instead of just detecting that the
web site is malicious, can provide important feedback since the
initial cause of the infection vector can be investigated much
more easily due to additional information, such as common-
alities in different observations of the same infection vector.

To overcome the limitations of current approaches mainly
based on dynamic analysis of web sites, we introduce the
∆-system to identify malicious activity in a web site based
on static analysis of the differences between the current and
previous versions of the web site. We cluster these differences,
determine if the introduced or removed elements are associated
with malicious behavior, we identify the infection campaign it
belongs to, pinpoint the actual infection vector, and automat-
ically generate an identifying signature that can be leveraged
for content-based protection.

The main contributions of this paper are the following:

• We introduce the ∆-system, which is based on a novel ap-
proach to statically analyze and detect web-based infection
vectors, and which identifies infection campaigns based on
features associated with modifications observed between
two versions of a web site.
• We develop a tree difference algorithm that is resistant to

tiny changes, such as typographical corrections or the small
evolutionary modifications a web site undergoes.

• We develop a set of modification-motivated similarity mea-
sures to model the concepts of inserting and removing ma-
licious behavior into and from a web site.
• We evaluate the ∆-system on a large scale dataset, con-

taining 26 million unique pairs of web sites, to show its
applicability in real-world scenarios in terms of infection
campaign detection and identification capabilities.

2 ∆-SYSTEM DESIGN
The ∆-system, instead of trying to solve the problem of

deciding if a web site is malicious or benign provides a solution
to the search problem of finding new infection campaigns and
identifying similar, known infection campaigns. Nonetheless
we are still interested in deciding if a web site’s current behav-
ior is malicious or benign. Instead of analyzing web sites in
their entirety, the ∆-system investigates only the difference
between two versions of the same web site.

The main idea of the ∆-system is to identify if the change
made to a web site altered the behavior of the web site, i.e.,
if we can be certain that the new version of the web site is
malicious or benign, by investigating if the modifications are
similar to already observed ones, such as modifications associ-
ated with an ongoing infection campaign. In order to identify
the changes that were made to a web site, we need a base
version, i.e., an older version of the same web site.

The analysis process of our system is described hereinafter,
followed by a discussion on potential uses of our system, and
the impact of deploying the ∆-system.

2.1 Analysis Process
The ∆-system’s analysis process follows a simple four-step

process, which is shown in Figure 1, and whose steps are:

1. Retrieval and normalization of the web site.
2. Similarity measurement with respect to a base version.
3. Cluster assignment of the similarity vector.
4. Generation of the identifying signature.

Evidently, a base version of a web site has to be available. In
the case that a local base version does not exist, however, we
might still be able to retrieve an older version through web
archives, such as the Internet Archive1 or a web cache provided
by a search engine. This makes our approach applicable for
web sites that are visited rarely and were no local base version
is kept, if we accept the overhead to retrieve the base version
from a remote archive. While this might seem counter-intuitive
because of the potentially large time difference between the
archived and current version, we show in our evaluation that
this is indeed a possible alternative.

Following this brief overview, we discuss the important steps
of the analysis process in more detail. First, normalization of
a web site; second, how the similarity to the base version is
measured; third, how the identifying signature is generated.

2.1.1 Retrieval and Normalization
First, we retrieve the current version of a web site, for

instance the web site a user requested. Then, after we have re-
trieved the source code of that web site, excluding all external
references, such as included scripts or frames, we perform multi-
ple normalization steps: we normalize capitalization of all tags,
we reorder attributes of each tag and discard invalid attributes,
and we normalize the quotation of an attribute’s value. We
perform this normalization step to ensure that functional equiv-
alent tags are treated equally during our evaluation, and that
changes such as changing the capitalization of a tag or switch-
ing from single to double quotes do not affect our final results.

1Internet Archive, http://www.archive.org
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Figure 1: Analysis pipeline of the ∆-system.

2.1.2 Similarity Measurement and Clustering
Following these normalization steps, we measure the sim-

ilarity to an already known (and normalized) base version.
Measuring the similarity between two versions of the same
web site in a meaningful way is non-trivial. The ∆-system
first performs unordered tree-to-tree comparison via a novel
algorithm that we introduce in Section 3. The algorithm ex-
tracts the nodes (or tags; subsequently, we use both terms
interchangeably) from the Domain Object Model (DOM) tree
of a web site that are different between base and current ver-
sion. Second, based on the extracted nodes, we leverage a
variety of different features to extract meaningful information
from the two versions (described in detail in Section 4). The
system then tries assigning these feature vectors to a cluster,
or detects them as outliers, if they are not similar to any
previously-observed modifications. Each different tag type,
e.g., <input> or <script>, is treated separately, i.e., each type
is assigned its own feature space; we do not project two tags of
a different type into the same feature space. Additionally, due
to the different nature of our features, where different distance
metrics are essential for accurate cluster assignment, we per-
form consensus clustering for different groups: binary features,
absolute and relative features are all treated as separate clus-
tering instances. The cluster assignment and outlier detection
process then distinguishes between three different cases:

• Assignment to an existing cluster:

– Insertion or removal of an infection vector, if the cluster
corresponds to a known infection campaign.

– Legitimate modification, e.g., a version update of a li-
brary or the insertion of Facebook’s like button, if the
cluster does not correspond to an infection campaign.

• Detection as an outlier:

– Potentially the start of a new infection campaign, if
malicious behavior was inserted.

– Potentially the end of a running infection campaign, if
malicious behavior was removed.

– A modification that is not of primary interest to us, such
as a new article, template modifications, or a redesign
of the web site.

• Formation of a new cluster (the similarity vector we are
clustering and other vectors that are close, which were out-
liers before, put the number of total vectors in this area of
the feature space above the threshold to form a new cluster,
i.e., we observed the number of the same modification in the
wild that we require to constitute a trend, c.f. Section 5.1):

– New infection campaign, if the node was inserted and
is associated with malicious behavior.

– End of an infection campaign, if the node was removed
and is associated with malicious behavior.

– Legitimate modification, e.g., an update to a new, bleeding-
edge version of a library or the content-management
system used, such as Wordpress.

Upon cluster assignment of the similarity vector, we output
the associated cluster, i.e., the corresponding trend (subse-
quently, we use these terms interchangeably). For instance, an
infection campaign if the corresponding modification inserted
or removed a known infection vector. Here, it is important to
note that the detected clusters do not discriminate between
removed and inserted nodes but treat them equally because
we do not leverage the notion of removal or insertion in the
feature computation, but attach it to the vector as “external”
meta information that is not used during clustering. This
supports the detection of removal and insertion of the same
trend with the exact same cluster in both cases and, therefore,
increases robustness of our system.

The ∆-system does not provide detection capabilities for
malicious behavior on its own, but rather relies on an external
detection system. This detection system is queried once a
new cluster is formed to identify if this observed trend consti-
tutes a malicious or a benign cluster. In order to guarantee
a high likelihood, we “bootstrap” each cluster by querying for
10 random samples, and acquire a consensus decision for the
returned labels. For instance, a new cluster is observed and
9 out of 10 of the random samples from this cluster have been
assigned the label malicious, then the ∆-system will assign
the label malicious to any new observation in this cluster.

2.1.3 Signature Generation
For each of the identified trends, we generate a signa-

ture that matches the textual representation of all of the
nodes assigned to a cluster (e.g., a cluster describing “<script
src=’http://$random-url/exploit.js’>”). This signature is gen-
erated by simply interpreting the textual representation of
each node as a deterministic finite automaton, merging them
together, and calculating the minimal version, which can be
done in polynomial time. The resulting DFA can then be trans-
lated into a regular expression that can be used by intrusion
detection/prevention systems2.

Such an identifying signature is, generally, an under-approx-
imation of the actual (unknown) signature. For instance, in
the above example the URL is randomized. Here, the gener-
ated signature only describes the observed samples, i.e., where
$random-url might be “a.com” or “b.org”, while the trend
could be more general and also include “c.net”. Leveraging
only the identifying signature would miss web sites that fol-
low the same trend, i.e., web sites who might serve the same
infection vector. While this is of no concern in the case of

2Although generated signatures match normalized tags by
default, it is trivial to normalize incoming data in the same
way and match arbitrary tags that follow the same trend.



leveraging the ∆-system for every request (here, we would
assign a similar, but unobserved, tag to the same cluster), it
can be an issue if the generated signature is used as input to
other tools. A possible remedy is to generalize the signature
and to introduce a widening operator to describe the different
parts of the nodes following this trend. For instance, one could
simply widen 5 different characters at the same position in
5 different random samples picked from a cluster to an over-
approximating wildcard. An over-approximation, however, is
also likely to introduce incorrect matches, which is why we
recommend using the ∆-system if no exact signature matched.

2.2 Use Cases
We see the ∆-system to be deployed in two main scenarios:

next to a web crawler to actively search for new infection cam-
paigns, and next to a proxy to identify infection campaigns
(passive) or to improve user-protection (active). Additionally,
there is a third, minor scenario: providing feedback on evasions
of detection systems. Subsequently, we describe all three use
cases in more detail, however, in the remaining of the paper,
we focus on the first use case: paired with a web crawler.

The most interesting use case, in our opinion, is the active
identification of new infection campaigns. In this case, one
deploys the system side-by-side to a web crawler. While the
web crawler retrieves potentially interesting web sites multiple
times over a given period of time, our system analyzes the differ-
ences. When our system detects a new cluster, i.e., a significant
number of very similar modifications, an external detection
system then decides if this change is associated with malicious
behavior or not. If malicious behavior was introduced then
we found a new infection campaign and we can generate the
identifying signature for this cluster. Based on the elements
of the cluster, we can then pinpoint the infection vector (e.g.,
identify parts of the tag that are common among all web sites
in that cluster) and investigate other similarities manually
(e.g., only online stores running a specific version of the PHP
application osCommerce were infected). Starting from those
similarities, it is then possible to: generate a more precise
fingerprint for the campaign, find other infections via search
engines, and estimate the scope of an infection campaign.

The second envisioned deployment of the ∆-system is the ex-
tension of a web browser or a proxy. In most cases, the browser
or proxy already caches visited web sites for performance rea-
sons. Moreover, in security-sensitive environments, it is very
likely that a detection system (e.g., an anti-malware engine)
is already in place to ensure that only benign web sites can be
accessed by the user. Such a detection system can be leveraged
by the ∆-system to analyze inserted tags. The system can com-
plement these tools to prevent repetitive scanning of web sites,
to improve user experience by increasing analysis performance,
and to provide insight into targeted attacks. For example,
small changes a user might encounter include automatic page
impressions counter, updated weather or date information, or
the output of the processing time to render the web site on the
server’s side. While previous work requires the reevaluation of
the entire web site, the ∆-system can identify these changes
as benign much more easily. It is even possible to obtain
more accurate results with our system than with the detection
system, e.g., if it is based upon simple detection methods, such
as fingerprinting of known malicious scripts, or if the detection
system is being evaded. Additionally, once a malicious web
site is identified, the ∆-system can verify that a malicious
modification was removed and that the web site is now benign.
Particularly, if an infection campaign is dormant or the exploit
page is offline, dynamic analysis systems detect that the web

site is benign because it does not detect any malicious behavior.
Since the ∆-system is purely static and verifies that the mali-
cious content was removed, it does not have this disadvantage.

Lastly, the ∆-system can also be leveraged to detect evasions
and bugs in detection systems and online analyzers. For exam-
ple, if the analyzer is dynamic, but behaves differently than
a standard browser in even a single case, then malware can
fingerprint the detection system. Such a fingerprinting method
allows the attacker to thwart detection much more easily, for
instance, without having to utilize a blacklist of the IP ad-
dresses used by the online analyzer. Leveraging our system, we
can detect these evasions when they are introduced. The sys-
tem can pinpoint the changed content precisely and, by doing
this, support the developer in identifying the reason why the
analyzer is behaving differently, correcting the corresponding
bug, and preventing further evasions leveraging the same bug.

3 FUZZY TREE DIFFERENCE
First, to be able to measure the similarity between two web

sites in a meaningful way, we need to define the notion of
difference. We are primarily concerned if a web site behaves in
a benign or malicious way. To this end, we need to understand
what modifications to the content can result in behavioral
changes, and how we can isolate the modifications from other
parts of the web site that have no effect on the overall be-
havior. We identify these interesting parts by leveraging the
hierarchical structure of a web site and interpreting a web site
through its DOM tree.

Previous work introduced various algorithms to detect the
semantic change in hierarchical structured data. The main
idea behind HTML, i.e., describing how to display data instead
of describing the semantics of the data itself, renders nearly
all introduced XML-centered approaches unsuitable to extract
meaningful information about the modifications. An often
made assumption is that the underlying tree structure has a
significant semantic relationship with the content, which is not
necessarily the case for HTML. Moreover, leveraging standard
maximum cardinality matching on cryptographic hashes and
simple edge weights of 1 (based in the nature of cryptographic
hash functions), any change would be visible, including very
small changes that are uninteresting to us, such as single char-
acter or word changes and legitimate evolutions. We denote
such a tree-to-tree comparison as not tiny change resistant or
not fuzzy. To solve this problem, and to identify interesting
modifications made to a web site more precisely and more
efficiently, we generalize the previous notion of tree difference
algorithms and introduce a similarity weight. We refer to
our algorithm as the fuzzy tree difference algorithm, which is
heavily influenced by the unordered tree-to-tree comparison
algorithms by Chawathe et al. [17] and Wang et al. [18]. Such
a fuzzy algorithm is necessary when comparing web sites that
have evolved over an extended period of time, e.g., have been
edited constantly over a two week period. Otherwise, the sheer
number of remaining nodes to analyze makes it infeasible to
leverage computationally expensive features with reasonable
performance overhead.

While we provide a formal description of the algorithm in
Algorithm 1, we give a brief informal description first: the
algorithm expects three parameters, T1, T2 and tr. T1 and
T2 are normalized DOM trees, i.e., all tags are capitalized in
the same way, all attributes occur in the same order and their
values are enclosed in the same way (quote-wise). tr is the
threshold value for the similarity measurement, and can range
from 0 to 1. Starting from the trees T1 and T2, we create
a temporary graph to match pairs of similar nodes through



maximum weighted bipartite graph matching (Hungarian algo-
rithm [19]). This graph is constructed by inserting every node
of T1, then inserting every node of T2. For each node from T2,
we connect it with an edge to every node from T1 that has a
similar fuzzy hash value (i.e., the Jaro distance of both hashes
must be greater or equal to tr) and that takes the exact same
path (in the sense of unordered tree-traversal) as the node
from T2. The edge’s weight is equal to the similarity measured
through the Jaro distance between both hashes (i.e., at least
tr). Additionally, we color all matched nodes blue. In the last
step, we remove the corresponding matched nodes from the
trees T1 and T2 and output a list of removed (remaining in
T1) and inserted (remaining in T2) nodes.

While the reason for coloring nodes might not be obvious,
later on, we leverage the color of a node in the remaining nodes
of T1 and T2 in our similarity measures to detect a matching
asymmetry, i.e., if a tag with a very similar hash and the same
path from the root node was matched, such as a template that
was used more often in T2 than in T1.

The implementation of the ∆-system under evaluation lever-
ages ssdeep [20] as the fuzzy hash function and a threshold
of 0.99 for the Jaro distance [21] (which is normalized to 0 to
1, i.e., we require very similar tags). Similar to cryptographic
hash functions like MD5 or SHA, a fuzzy hash function, such
as ssdeep, maps arbitrary long values to a short hash. In con-
trast to cryptographic hash function, however, a fuzzy hash
function maps similar values to similar hashes that can be
then used to measure their similarity. This property allows us
to efficiently compare nodes of the DOM tree or their content
regardless of their actual length, which otherwise might be
computational too expensive when using standard string sim-
ilarity measures for longer tags or content. We selected the
Jaro distance function to compare two hash values because
it is a simple string similarity measure originally introduced
for duplicate detection by Jaro [21] and best suited for short
strings while accounting for exactly matched characters as
well as transpositions, therefore it quantifies the similarity of
fuzzy hashes for similar data accurately.

In general, a threshold value of 1 when used with a crypto-
graphic hash function is equivalent to standard unordered tree-
to-tree algorithms. On the other hand, a threshold value of 0
regardless of the hash function is equivalent to comparing every
element to every other element and impractical for any modern
web site due to the sheer number of possible combinations,
which is why a reduction of potential matches is essential.

3.1 Example
An example of the tree difference algorithm is shown in

Figure 2. The source code of a simple base version and current
version of a web site are shown in Listing 1 and Listing 2 respec-
tively. Two modifications to the source code were made: first,
a head tag including a script tag with an external source URL
was inserted, and, second, a typographical mistake in the class
of the p tag was fixed and one word in its content was changed:
“foo” was replaced by “bar”. Figure 2 illustrates that for a
standard tree difference algorithm the modified p tag would,
correctly, constitute a modified p tag (the removed p tag is
marked with a red chessboard pattern, while the inserted p tag
is marked with a green diagonal pattern). However, since we
are interested in severe changes and modifications associated
with behavioral changes, these tiny changes are uninteresting
to us, and, like the example shows, they are discarded by our
algorithm.

Algorithm 1 Fuzzy Tree Difference

1 function FuzzyTreeDifference(T1, T2, tr)
2 G ← Graph
3 for all n ∈ T1.nodes do
4 G ← G.insert node(n)

5 for all n ∈ T2.nodes do
6 for all m ∈ T1.nodes do
7 if path(m) = path(n) then
8 d(m,n) ← jaro(hash(m), hash(n))
9 if d(m,n) ≥ tr then

10 G.insert node(n)
11 m.color ← blue
12 n.color ← blue
13 G.insert edge(m,n, d(m,n))

14 M ← max weight matching(G)
15 for all (m,n) ∈M do
16 T1.remove node(m)
17 T2.remove node(n)

18 return T1, T2

4 SIMILARITY MEASURES / FEATURES
The most interesting part of web sites from a malicious code

point of view is described by the HTML markup language:
JavaScript, inline frames, or the use of plugins. Most research
on document similarity, however, assumes that markup lan-
guage is not of major interest and that it can be removed
without substantial loss of information. For detecting infec-
tion vectors, this assumption does not hold. Essentially, this
violation makes applying existing work in document similar-
ity for identifying infection vectors impractical, because core
elements are discarded.

Therefore, we introduce our own similarity measures. Once
we have extracted the different tags between two versions of
a web site, we can map each tag into the feature space in
which we cluster similar changes together. In this section, we
describe the features we are using and the intuition behind
them. Each of our features we apply on multiple levels (where
applicable): the whole tag and for every value of its attributes.

4.1 Template Propagation
First, we introduce the template propagation measure, a

binary feature that simply models what content was intro-
duced or removed from the web site in terms of their similarity
to previous DOM tree nodes, i.e., it captures the concept of
reused templates by checking if a node exist already in the
base version, but are unmatched, e.g., because there are more
matching candidates than actual matches are possible. Since
all matched nodes in the output T1 and T2 of our tree differ-
ence algorithm are colored blue, we can simply set the value
of this feature to 1 if the node is blue and 0 if it is not.

The motivation for this measure is that many web sites, for
example blogs, use templates when publishing a new article
or when showing a new comment, classified, or advertisement.
Detecting that a template is repeated allows us to model the
degree to which a web site has drifted away from expected
changes, e.g., in terms of character count distributions for a
blog with articles written in English.

4.2 Shannon Entropy
Second, we leverage the Shannon entropy as a feature of infor-

mation in a tag or an attribute’s value. Two different features
are derived from the Shannon entropy: (a) the absolute Shan-
non entropy, which is dependent on the length of the string, (b)
the normalized Shannon entropy, i.e., the absolute Shannon



1 <html>
2 <body>
3 <p class="sumamry">
4 [...] foo [...]
5 </p>
6 </body>
7 </html>

Listing 1: Base version, source code.

1 <html>
2 <head><script
3 src="http ://url/malicious.js">
4 </script ></head>
5 <body><p class="summary">
6 [...] bar [...]
7 </p></body>
8 </html>

Listing 2: Current version, source code.

Base version Current version Fuzzy Tree
Difference

(section 3)

Standard Tree Difference

vs.Tree 
Difference

html

script

head

p

body

html

p

body

html

script

head

html

script

head

p

body

p

Figure 2: Comparison between a general tree difference algorithm and the fuzzy tree difference algorithm (section 3). Nodes
with a green diagonal stripes pattern denote nodes that were detected as inserted, while nodes with a red chessboard pattern
were detected as being removed.

entropy divided by the ideal Shannon entropy of a string of the
same length (i.e., it is normalized to the interval from 0 to 1).

Our intuition behind the Shannon entropy is to measure
the distance on how far the tag or attribute is away from a
random source. For instance, to model that the URL in a “src”
attribute of a <script> tag was generated by a random source.

4.3 Character Count
In the third set of features we employ a character count.

The first feature in this set simply measures how often a single
character occurs in the tag or the attribute’s value and discrim-
inates between upper- and lower-case characters. The second
feature also measures how often a single character occurs,
however, it ignores capitalization and counts an “A” as an “a”.
The third feature follows in simplicity and is the count of each
digit. A fourth, fifth and sixth feature are taking advantage of
the same method, but are performed on the fuzzy hash value
(ssdeep in our implementation) of the tag or attribute instead.

Beyond these six features, we are also computing relative
features for both of those two sets, as we did already in case of
the Shannon entropy. Alike to the Shannon entropy features,
the motivation behind these features is to model the character
and digit distribution in a string.

4.4 Kolmogorov Complexity
The third set of measures we introduce is based on an ap-

proximation of the upper-bound on the Kolmogorov complex-
ity [22]. Kolmogorov complexity denotes a complexity measure
specifying the lower-bound of text necessary to describe an-
other piece of text in an algorithmic way. One of the most
important properties of the complexity is its incomputability.
An upper-bound on the other hand is easy to compute by
taking the length of the text compressed by any lossless com-
pression algorithm. Since these features are based on a second
information theoretical measure, next to the Shannon entropy,
it is necessary to emphasize that they are complementary in

our scenario: on the one hand, Kolmogorov complexity is
conceptually different from the Shannon entropy, and on the
other hand, we approximate the Kolmogorov complexity up
to (at best) an additive constant.

These measures exploit the upper-bound and the fact that
compressing already packed data results in nearly no benefit, in
order to measure a change that introduces packed or encrypted
data, such as malicious data trying to evade detection.

We introduce, again, two different features based on com-
puting an upper-bound of the Kolmogorov complexity. First,
the absolute upper-bound on the tag extracted by our tree
difference algorithm; second, the ratio of the upper-bound over
the length of the string. In case of very short strings, the upper-
bound might even take up more space than the actual string.

4.5 Script Inclusion
Scripts included in web sites are the most prominent way to

infect a user with malware, but they are also used legitimately.
Differences exist between how malicious scripts and legitimate
ones are used and included. For instance, malicious scripts
are rarely including local files; instead, they usually include
from an external source or provide the source code directly.
The following two binary features model these differences.

4.5.1 Absolute Source URL
The enduring rise of content-delivery networks, which are

often heavily relying on load-balancing based on the domain
name system (DNS), lead to scripts being included much more
often with an absolute and external source address in legiti-
mate cases than it was the case prior to the predominance of
these networks (due to potential compatibility issues if scripts
are included differently). It is important to understand if a
web site is hosted on a content-delivery network since it bears
the reasoning that these web sites are generally much more
optimized than personal web sites, to save on bandwidth on
account of the smaller size. This then has an impact on the



importance of other features. This feature is also binary; it
is 1 for an absolute non-external source URL and 0 otherwise.

The many legitimate use cases of including scripts from
an absolute URL suggest that this feature will not have a
discriminatory impact on its own; rather, it supports other
features by modeling the inclusion-style in a web site. The
notion of a single inclusion-style roots in previous work by
Nikiforakis et al. [23], which suggests that web sites follow the
same inclusion patterns, i.e., the distribution of how scripts are
included is biased toward either relative or absolute inclusions,
and only rarely uniform.

4.5.2 External Source URL
While the last feature is a bias function to judge the use of

scripts with an absolute source, the next feature is a bias func-
tion for the concept of external source URLs. It is important
to mention that, if an external script is included, assuming
the external domain is maintained by a third party, then the
web site operator has to trust that the third party providing
the external script will not insert any malicious code.

4.6 Inline Frames
Similar to the features to model the use of script tags, the

following three binary features try to model the inclusion of
malicious inline frames, by looking into properties that are
uncommon for benign inclusions.

4.6.1 Absolute and External Source URL
Likewise to the nature of the source URL features for scripts,

these features give an intuition on the use of inline frames.
Both features are identical to their script sibling, but they
examine <iframe> tags instead of <script> tags.

Their motivation follows closely the motivation for the script
features: i.e., the feature for absolute source URLs is support-
ing other inline frame measures as a bias function. In the
past, inline frames with an external source address were often
used to include either advertisements or third party widgets.
Recently, those moved to inline JavaScript or embedding plu-
gins directly. Adversaries, on the other hand, still use these
frames because they allow for easier fingerprinting and sup-
port delivering different infection vectors per user, for example
depending on the browser’s patch-level, installed plugins, or
by obfuscating each reply differently. This fine-grained con-
trol helps the adversary to maximize the attack efficacy while
reducing the likelihood of detection.

4.6.2 Hidden Frame
Beyond absolute and external frames, another indicator

for malicious content being included exists: hidden frames.
Legitimate frames are generally made visible to the user. Ad-
versaries on the other hand prefer that the included web site
is invisible, which is why they often resort to setting width
and height of the frame to a low value, so that the frame is
visually hard to spot for a human. We investigated a random
sample of 10,000 inline frame tags that we extracted from our
dataset and found that legitimate inline frames are often set
to a width and height of larger than 100 and rarely hidden
(the style attribute “display: none” is rarely used). We model
this phenomenon, assuming that a majority of malicious inline
frames uses a much smaller area of screen space, by restricting
width and height of our feature to a maximum of 15 pixels.
The feature is simply 1 for hidden frames and 0 otherwise.

5 EVALUATION
Generally, the problem we are trying to solve is an instance

of knowledge discovery in databases [24, 25]. More precisely,
when searching actively for infection campaigns next to a

web crawler, we are interested in detecting outliers, i.e., novel
changes, and the appearance of clusters, i.e., when a new
trend is observed, for instance an infection campaign. While
various clustering algorithms can be employed, the design of
our system encourages the use of an algorithm that detects
local outliers. Additionally, the distribution of a cluster can
differ from the distribution of any other cluster, particularly
for clusters with a low member count, i.e., it is not reasonable
to assume that all changes follow a very similar distribution
in the feature space. Since we are primarily interested in the
formation of new clusters, when it is even less likely that this
assumption will hold, centroid- or distribution-based clustering
algorithms such as k-means (which will give spherically shaped
clusters) or expectation-maximization (e.g., Gaussian mixture
models) are unlikely to provide any valuable insight on new
infection campaigns early enough. To counter this issue, we
adopt a variant of the density-based clustering algorithm OP-
TICS (Ordering Points To Identify the Clustering Structure,
by Ankerst et al. [26]), namely OPTICS-OF (OPTICS with
Outlier Factors) by Breunig et al. [27].

5.1 OPTICS-OF
The OPTICS-OF algorithm takes two parameters: the max-

imum distance for a cluster and the minimal number of vectors
necessary to form a cluster. In the scenario of trend analy-
sis, the maximum distance corresponds to the similarity of
a change, while the minimal number of vectors necessary de-
scribes the number of instances of a change we want to observe
before we consider it a trend, i.e., before we want to verify
that we found a previously-unknown infection campaign.

The algorithm works, in essence, as follows: if two vectors in
the feature space are closer than the maximum distance, then
they are directly density-reachable. If at least the minimal
number of vectors are directly density-reachable from a vector,
then this vector is a core object and forms a cluster. A cluster
does not only contain directly density-reachable vectors from
this core object, but is defined transitively, i.e., it contains
all vectors that are directly and transitively density-reachable
from the core objects. Therefore, an outlier is either not
density-reachable to any other vector at all, or only density-
reachable to a number of vectors, where none of the vectors is
a core object, i.e., none of the vectors forms a cluster. In our
experiments, we require 10 similarity vectors that are directly
density-reachable to form a cluster.

5.2 Dataset
First, in this section, we describe in detail what constraints

we imposed on our dataset, why these constraints were im-
posed, and how we obtained our dataset. In general, it is a
challenging problem to obtain a representative sample of differ-
ent and distinct malicious web sites. Invernizzi et al. [28] have
shown that this is even the case when only mediocre toxicity3

is required, i.e., it is even difficult for a dataset with a small but
non-negligible percentage of malicious web sites. This poses a
problem for collecting our dataset because we desire moderate
toxicity and diversity among malicious infection vectors to
verify that we can correctly, and without bias, identify similar
trends, and by this, similar infection campaigns. Moreover, to
discard trivial cases, the requirements on the web sites in our
dataset are even more restrictive:

• Web sites must have been set-up for a legitimate reason,
i.e., we are interested in landing pages and not interested

3Toxicity measures the maliciousness of dataset and simply
corresponds to the fraction of malicious samples in a dataset
over all the samples of the dataset.
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Figure 3: Overview of the difference in time between base
and current version of a pair in the final dataset.

in exploit pages. Exploit pages denote web sites that are
set up by an adversary to exclusively deliver malicious code,
while landing pages denote the infected legitimate page. We
enforce this restriction because recent work establishes that
legitimate web sites are nowadays the primary target and
because other approaches by Provos et al. [11, 14], Ratana-
worabhan et al. [29], Curtsinger et al. [30] or Seifert et
al. [31] are already able to detect purely malicious web sites
with outstanding accuracy.
• Two distinct versions of a web site are required, i.e., a web

sites must have been modified (legitimately or maliciously)
to constitute a realistic sample.

We obtained our dataset by crawling the web from January
2013 to May 2013 via a 10-node cluster of custom crawlers run-
ning an adaptive fetch schedule with a recrawl delay of at least
15 minutes and an exponential back-off delay (multiplied by a
constant factor of 10 if no change was observed in a recrawl and
with a strict maximum of one week). The hourly seed of URLs
for our crawler contained web sites that were already present in
our dataset and also Yandex’s search engines results for Twit-
ter’s trending topics. Additionally, to counter the problem of
low toxicity and prevent a bias toward benign web sites, we in-
jected a total of 2,979,942 URLs of web sites into our crawl seed
that the Wepawet online analyzer [12] had analyzed previously,
starting with samples observed in the beginning of January
2013 and ending with samples observed at the end of April
2013. In total, after removing exact duplicates and restricting
the number of pairs per unique URL to a maximum of 10, our
dataset spans a size of 700GiB and 26,459,103 distinct web site
pairs from 12,464,920 unique URLs. A distinct pair denotes
a pair where both versions are different from each other in re-
spect to the SHA256 checksum of their normalized DOM tree.

The time difference, before a change between base and cur-
rent version of a web site was observed, is shown in Figure 3.
The average time difference of our pairs is 4 weeks, with 80%
of all pairs being 2 hours or more apart, 70% being 12 hours or
more apart, 60% being 7 days or more apart, and 50% being
20 days or more apart (median). Since not all web sites have
been recrawled after exactly 15 minutes, we can only observe
that a change happens in at least 16% of the web sites in a
15 minute interval after a visit.

5.3 Case Studies: Identified Trends/Clusters
In our experiments, we identified a total of 67,038 different

clusters, with the majority of clusters having 30 or less elements.
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Figure 4: Overview of the number of different elements that
are in each cluster.

Figure 4 depicts the final distribution of cluster sizes we ob-
served in our experiments. Evidently, the observed distribution
follows closely the power law function: y = 2014 · (x− 10)−1.8.
In addition, we observe that the total sum over all cluster sizes
is less than the number of distinct tags that we have analyzed.
This is the case because any remaining tags are still considered
to be outliers and do not constitute a trend yet. As a matter
of fact, both the close resemblance to a power law function
and a non-negligible amount of outliers are expected, because
some changes are only made to a limited number of web sites,
e.g., very similar articles might be posted to less web sites than
we require as a lower-bound to constitute a trend, and also
because our view of changes is limited by the seed and link
expansion of the web crawler, i.e., it is possible that we only
observed a subset of the true instances of each unique trend.

We feel that it is important to understand what a single
cluster is actually describing, and we provide different examples
about what tags have been clustered together. Therefore, we
investigate two clusters in more detail. Although both clusters
are low-count clusters, i.e., relatively small, their small size
actually illustrates that the ∆-system does detect when a trend
reaches a significant distribution and that it does not rely on
an unreasonable large number of observations of a single trend.

The first example we discuss is an actual infection campaign
that we have observed in the wild, an instance of a redirection
to a Cool Exploit Kit installation. In contrast, the second
example we discuss corresponds to a cluster describing the
change in cross-site request forgery tokens.

We selected these two clusters manually by filtering clus-
ters based on the generated signature with simple heuristics
that suggest malicious behavior, such as external scripts that
are included with a random component or JavaScript with
a non-negligible ratio of digits over characters (suggesting
obfuscation). Clearly, these and other heuristics can also be
leveraged to order clusters according to “levels of interest” or
to remove clusters that are likely uninteresting and should not
be analyzed manually by an analyst.

Other trends we observed, but will not discuss in detail,
include the modification of Facebook Like buttons (the back-
link URL changes), a version update for the JQuery library
served for blogs hosted on Wordpress.com, or the insertion of
user-tracking tokens.

5.3.1 Cool Exploit Kit Infections of Discuz!X
One of the most interesting clusters, which shows the applica-

bility of the ∆-system in practice, describes an infection vector
used to redirect to a specific infection campaign that uses the
Cool Exploit Kit to distribute malware. This in-the-wild infec-
tion campaign was found at the beginning of April 2013 in a
set of 15 different web sites from the following 10 unique URLs:

• http://att.kafan.cn



• http://frozen-fs.net
• http://jses40813.ibbt.tw
• http://ppin888.com
• http://www.dv3.com.cn
• http://www.kxxwg.com
• http://www.ruadapalma.com
• http://www.sdchina.cn
• http://www.wlanwifi.net
• http://www.yysyuan.com

Once we verified that the cluster was indeed malicious, we
investigated the underlying commonalities between them. We
found that all web sites were using the discussion platform
“Discuz!X” [32]. Discuz!X is an Internet forum software written
in PHP and, according to the Chinese National Radio [33], the
most popular Internet forum software used in China. Clearly,
these infections are part of the same infection campaign. Ad-
ditionally, such a strong common ground suggests that the
infection is likely to be rooted in a security vulnerability in
the Discuz!X software, and it provides support identifying the
cause and a removal method.

Listing 3 shows the respective generated signature of the
infection. For this infection campaign, we did not observe any
differences in the tags that were clustered together.

1 <script type
="text/javascript" language =" javascript">

2 p=parseInt;
3 ss =(123) ? String.fromCharCode : 0;
4 asgq=" [4036 character obfuscated string] "
5 .replace (/@/g,"9").split ("!");
6 try { document.body &=0.1 } catch(gdsgsdg) {
7 zz=3; dbshre =79;
8 if(dbshre) { vfvwe =0;
9 try { document; }

10 catch(agdsg) { vfvwe =1; }
11 if(!vfvwe) { e=eval; }
12 s="";
13 if(zz) for(i=0;i -1374!=0;i++) {
14 if(window.document)
15 s+=ss(p(asgq[i],16)); }
16 if(window.document) e(s); }}</script >

Listing 3: Cool Exploit Kit infection vector.

Beyond the inclusions of infection vectors pointing to an
installation of the Cool Exploit Kit observed in all pairs, one
web site (http://frozen-fs.net) also included an infection vector
that tried to infect visitors via an installation of the Blackhole
exploit kit.

The domain that included the Cool Exploit Kit and the
Blackhole exploit kit, “frozen-fs.net”, was not cleaned up, and
we observed that it was suspended by the provider 27 days
after we detected the infection.

5.3.2 Cross-Site Request Forgery Tokens
A second interesting low-count cluster we found during our

evaluation models variations in cross-site request forgery to-
kens in deployments of the Django web application framework.
In total, we identified a similar modification among 17 different
pairs of web sites. Each web site used form-based cross-site
request forgery tokens and used the same identifier for a hid-
den form field, namely “csrfmiddlewaretoken”. For every pair,
the attribute features did not diverge for the name attribute,
while all were different for the value attribute. Nonetheless,
the ∆-system clustered them together, since the random en-
tropy was nearly constant for the value attribute among all
observed removed and inserted instances. The entropy was
nearly constant for the normalized case as well as for the

absolute entropy features. The exact identifying signature for
that cluster is shown in Listing 4.

1 <input
2 name="csrfmiddlewaretoken"
3 value="(JhD3IwCXcnnpRtvE42MN6r8dOBOWRoxG
4 |hH4f6eOMCOTEYF0RYoXFRDaTLzym61O2
5 [...]
6 |DNczoWjeN1nK6nq3whXYpSSnZGdxx0Og
7 |F9yLS0jNUXIURsXDRqxS5NVW7qXfWsgf)"/>

Listing 4: Cross-site request forgery token; | denotes an or.

We feel that this observed trend constitutes a perfect exam-
ple in which the limitations of the signature generation stick
out and where the ∆-system shows its robustness by cluster-
ing these changes correctly together. While the signature can
detect all observed instances correctly, it is clear that when
trying to match new versions of a web site with the signature
we would fail to identify the changed token value correctly
since the value will change to a new, unobserved random value.

5.4 Performance
In order to judge the actual applicability of our system in

practice, a performance analysis is necessary. We show in
Figure 5 that the performance of the ∆-system allows for
deployments in real-world scenarios. However, corner cases
exist that could impact an actual deployment, if the difference
between the base and current version of a web site is partic-
ularly large. We performed a manual in-depth analysis of the
system that highlighted the actual performance bottleneck of
our system: close to 80% of the time when analyzing the two
versions was spent by the Python library BeautifulSoup to
parse the HTML structure of a page. Although, the number
of changes made to a web site plays the most important role in
analyzing the changes, pairs that took longer than 3 seconds
to analyze were exclusively web sites that sent data in an
encoding different than specified. BeautifulSoup tries to take
care of this and follows a code path that can get multiple
thousand function calls deep, and easily hits the recursion
limit of CPython. While we increased this limit in our eval-
uation to keep these pairs and prevent a dataset bias, the
particular functions are actually tail-recursive and, therefore,
can be expressed iteratively (thus, removing the necessity of
allocating stackframes). However, the abstruseness of the
involved functions prevented us from doing the very same in a
reasonable amount of time. Regardless of these (still outstand-
ing) engineering challenges for a general deployment, we could
analyze a single pair in a median time of 0.340 seconds and
in an average time of in 2.232 seconds. It is also evident that
we finished each analysis in at most 20 seconds, regardless of
the aforementioned problems encountered in BeautifulSoup.

These results, when taking into account that 60% of our
data is 7 days or more apart (c.f. Figure 5), support our claim
that the ∆-system does not necessarily need to keep a base
version locally, but could rely on public archives like the Inter-
net Archive or a web cache by a search engine. Nonetheless,
we strongly recommend keeping a local version to prevent
an additional delay in fetching the web site and to prevent
running into the problem of a potentially outdated or even
non-existing version on the side of the public archive.

6 LIMITATIONS
Similar to other static analysis approaches leveraging ma-

chine learning, our approach has some limitations, which can
be used to evade detection. This section discusses these limita-
tions and how they could be managed in a real-world deploy-
ment of the ∆-system. First, we introduce a limitation called
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Figure 5: Overview of the ratio of web site pairs that have been
completely analyzed in our experiments in less than x seconds.

Step-by-step Injection. Second, we will briefly discuss the Evo-
lution of Infection Vectors as a major fundamental problem
in detecting malicious code. Lastly, we discuss the trade-off
between dynamic and static analysis and the limitations of
either approach.

6.1 Step-by-step Injection
It is possible to circumvent the ∆-system by adding mali-

cious code in small steps, i.e., in a series of modifications where
each step on its own gets detected as being benign, while the
aggregation is malicious. For example, an attacker could build
an infection vector that delivers these small steps depending
on a cookie or the visitor’s IP address to keep track of the
client’s previous version. However, we argue that the scope
of such an attack is heavily limited because: (a) it requires
an attacker to be able to inject code that is executed on the
server-side, otherwise detection is possible because it has to be
done client-side, and the attack can also be impeded or even
avoided by keeping the first version instead of updating the
stored base version with every visit; or (b) the DOM tree will
be modified online, for example through JavaScript. In the
first case, an important and drastically scope-reducing factor
is that the vulnerability needs to support such an iterative
process, where, e.g., memory regions are shared among browser
tabs or between multiple visits to the same web site, which
is highly unlikely given the strict separation current browser
sandboxes enforce. In the latter case, on the other hand, we
suggest to analyze the web site on every mutation event4, i.e.,
by considering the web site that was modified online as a new
current version and comparing it to the stored base version.

6.2 Evolution of Infection Vectors
Detecting malicious code is an arms race and malicious web

sites are no exception. Malware developers are trying to evade
detection systems to gain the upper hand, while detection
system developers are trying to catch and prevent these eva-
sions. Previous work on evasions motivated the search for
better and different detection systems [34]. More advanced
obfuscation [35], encryption, poly- and metamorphic code [36]
and virtualized environments have become more common in
response to these improvements and impeded detection sys-
tems. With more approaches being able to handle these cases,
it is to be expected that malware and infection vectors will
evolve and successfully circumvent available detection systems.

4JavaScript events are called mutation events if they modify
the DOM tree, e.g., by changing attributes of a node, such
as the src attribute of a script tag, or inserting or removing
elements from the DOM tree.

While retraining the machine learning algorithm on a more
recent dataset is often a possible approach to counter the eva-
sion problem, it is only a near-sighted solution to counter the
dataset shift, as malware will deviate more severely, up to the
point where the features will not model the underlying problem
anymore. Even in cases where the features are not publicly
known to an adversary, it is possible to partially derive these by
probing the system carefully, which then will either allow for
successful evasion of the system or (on re-training) increase the
false positive and false negative rate because of misclassification
due to minuscule differences between legitimate and malicious
code in the feature space. Both cases are obviously not desired
for a detection system, however, it is a general problem of all
approaches employing machine learning [10,11,13,14,31,37–39],
and it is generally only countered reliably by adapting to a
new feature space, which we leave for future work.

6.3 Dynamic vs. Static Analysis
The ∆-system in its current form is a purely static analysis

system, while, at the same time, the Internet is becoming
more and more dynamic. While one might think that static
analysis is inferior to dynamic analysis here, this is not the
case. Instead, our system complements dynamic analysis sys-
tems: it detects trends/infections statically and can forward
the interesting trends/infections to dynamic analysis systems
that extract further information.

Our motivation to rely on a purely static analysis is based
on multiple reasons. First, dynamic analysis is not necessarily
useful at the early stage in which our system operates, i.e.,
trends that change the behavior and are interesting to us
show themselves first with static content changes, rendering
dynamic analysis (currently) unnecessary. A second argument
against dynamic analysis for the ∆-system is that it, for in-
stance by instrumenting embedded or included JavaScript to
modify the DOM tree to retrieve a “final” version of the web
site, under-approximates the behavior of the web site to this
specific execution environment and might yield a potentially
incomplete or untrue representation of the DOM tree. It also
poses the questions of when to consider the DOM tree “final”,
i.e., when to take a snapshot. Consequently, it might then be
possible to evade the trend detection step in the first place.
Additionally, we might also miss infection campaigns that are
statically present in the web site, but are removed dynamically
or are inactive (for us). For example, servers could be unavail-
able (for us) or code might not be loaded (for us), we could be
fingerprinted, the IP address of our analysis system might be in
a region of the world that is not affected or simply because the
user-agent of our browser does not match a (unknown) regular
expression. The third argument in favor of static analysis is
that it can be considerably faster than dynamic analysis, which,
in turn, allows us to leverage more computationally-expensive
features to increase trend detection accuracy.

Lastly, while the trend detection step is purely static, to
detect malicious behavior, the ∆-system relies on an external
analysis system that might very well use dynamic analysis.
Generally, we do not impose any limitations on this detection
engine but that it can detect malicious behavior.

7 RELATED WORK
In the following we discuss related work in areas tangent

to our research, such as web dynamics and the detection of
malicious code. To the best of our knowledge, no prior work
exists that actively searches and finds previously unknown
infection campaigns.



7.1 Detection of Malicious Code
Numerous papers have been published on detecting mali-

cious activity in web sites. The majority of them focus on
dynamic analysis of JavaScript in instrumented environments
or on rendering web sites in high-interaction client honey-
pots. Generally, it is important to recall that our system
provides additional information: the infection campaign and
the responsible node of the DOM tree.

Eshete et al. [40] discuss the effectiveness and efficacy issues
of malicious web site detection techniques. Approaches from
blacklists, to static heuristics, to dynamic analysis are com-
pared in their detection accuracy and time spent analyzing
the web site. A major argument in short-comings of previous
work is the missing discussion on the necessity of episodic
re-training or online learning capabilities, to keep up with the
ongoing evolution of web-based malware, and to prevent the
evasion of deployed detection systems.

Cova et al. [12] introduce the system JSAND to detect and
analyze drive-by download attacks and malicious JavaScript
in an instrumented environment. The system leverages a
comprehensive dynamic analysis approach by instrumenting
JavaScript to extract a variety of different features from redi-
rection and cloaking, to deobfuscation, to observing heap
exploitation. The system is compared to client honeypots,
such as Capture-HPC and PhoneyC, as well as the anti-virus
engine ClamAV. It shows a much lower false positive (0%) and
false negative rate (0.2%) than all other approaches (5.2% to
80.6% respectively), while taking an average of 16.05 seconds
to analyze a web site. CaptureHPC, the closest system in
terms of accuracy takes 20 seconds per sample.

Canali et al. [13] extend the dynamic analysis system JSAND,
by implementing a faster pre-filtering step. The main goal is
to prevent the submission of certainly-benign web sites to the
dynamic analysis system and hereby to reduce the time spent
on analyzing benign samples, i.e., the system assigns to a false
negative a much higher cost than it does to a false positive.
The filter method leverages a C4.5 (J48) decision tree and a
diverse set of features spanning from the HTML content, to
the JavaScript code, to information about the host, to uniform
resource location (URL) patterns. The filter is evaluated on a
dataset of 15,000 web sites and compared to similar methods
by Seifert et al. [31] and Ma et al. [39]. Both other methods
yield more false positives and false negatives, but process up
to 10 times more samples in the same time.

Provos et al. [11, 14] introduce a system to detect URLs
to malicious web sites. However, they are not considering
legitimate, infected web sites in general, as their approach is
restricted to detecting the inclusion of exploit pages, and hence
their approach is complementary to our system’s capabilities.
Their system uses a proprietary machine learning algorithm
to classify URLs based on features like use in “out of place”
inline frames, obfuscated JavaScript, or links to known mal-
ware distribution sites. Besides detecting 90% of all malicious
landing pages with 0.1% false positives, they validate previous
work by Moshchuk et al. [41] that infection vectors are inserted
into legitimate web sites through exploiting vulnerabilities,
advertisement networks, and third party widgets.

7.2 Web Dynamics in Security
Maggi et al. [10] introduce a web application intrusion

detection system, which is able to learn about changes made to
the web application. The problem of web application concept
drift is addressed by learning how the web application is
accessed by a legitimate user and employing an unsupervised
classification algorithm. Features include, for example, a

sequence corresponding to the order in which web sites are
accessed or how web page parameters are distributed. However,
the presented technique is orthogonal to our approach. The
main goal is not to find new infection campaigns or to protect
the visitor of a web site, but rather to protect the integrity
of the web application. Protecting a normal, wandering user
would require intrusion detection and protection of all web sites
the user visits, since the access pattern, on which the system is
based on, depend on the underlying architecture of the web site.
Although possible theoretically, it is practically impossible.

Davanzi et al. [42] studied a similar approach for detecting
the impact of web dynamics. They introduce a system to de-
tect if changes made to a web site are defacements, which might
cause serious harm to the organization, money- or reputation-
wise, or are legitimate, “officially approved” content changes.
However, they explicitly point out that their approach does
not work with malicious modifications because their approach
detects changes that are visible to the end-user, which is the
exact opposite of how malicious infection vectors are placed in
practice. In detail, they employ anomaly detection to regularly
visit and monitor a set of 300 web sites actively and detect if
changes made to the web site constitute a defacement or not.

8 CONCLUSION
In this paper, we introduced the ∆-system, a novel, light-

weight system to identify changes associated with malicious
and benign behavior in web sites. The system leverages clus-
tering of modification-motivated features, which are extracted
based on two versions of a web site, rather than analyzing the
web site in its entirety. To extract the important modifications
accurately, we introduced a fuzzy tree difference algorithm that
extracts DOM tree nodes that were more heavily modified,
discarding changes in single characters or words, or legitimate
evolutions. Beyond detecting if a change made to a web site
is associated with malicious behavior or not, we showed that
the ∆-system supports the detection of previously-unknown
infection campaigns by analyzing, unknown trends and mea-
suring the similarity to previous, known infection campaigns.
Furthermore, we showed that the system can generate an
identifying signature of observed infection campaigns, which
can then be leveraged to protect users via content-based de-
tection systems or as test-cases for online analyzer systems.
Ultimately, the system’s ability to identify specific infections is
helpful in identifying the reason why the web site was infected
by a specific campaign in the first place, such as a distinct ver-
sion of the web application among all infections; additionally,
it facilitates the removal of malicious code and the mitigation
of additional infections in the future.
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