
Comparing the Effects of DNS, DoT, and DoH
onWeb Performance

Austin Hounsel
ahounsel@cs.princeton.edu

Princeton University

Kevin Borgolte
borgolte@cs.princeton.edu

Princeton University

Paul Schmitt
pschmitt@cs.princeton.edu

Princeton University

Jordan Holland
jordanah@cs.princeton.edu

Princeton University

Nick Feamster
feamster@uchicago.edu
University of Chicago

Abstract
Nearly every service on the Internet relies on the Domain Name
System (DNS), which translates a human-readable name to an IP
address before two endpoints can communicate. Today, DNS traffic
is unencrypted, leaving users vulnerable to eavesdropping and tam-
pering. Past work has demonstrated that DNS queries can reveal a
user’s browsing history and evenwhat smart devices they are using
at home. In response to these privacy concerns, two new protocols
have been proposed: DNS-over-HTTPS (DoH) and DNS-over-TLS
(DoT). Instead of sending DNS queries and responses in the clear,
DoH and DoT establish encrypted connections between users and
resolvers. By doing so, these protocols provide privacy and security
guarantees that traditional DNS (Do53) lacks.

In this paper, we measure the effect of Do53, DoT, and DoH on
query response times and page load times from five global vantage
points.We find that althoughDoH andDoT response times are gen-
erally higher thanDo53, both protocols can perform better thanDo53
in terms of page load times. However, as throughput decreases and
substantial packet loss and latency are introduced, web pages load
fastest with Do53. Additionally, web pages successfully load more
oftenwith Do53 and DoT than DoH. Based on these results, we pro-
vide several recommendations to improve DNS performance, such
as opportunistic partial responses and wire format caching.

CCS Concepts
• Networks → Network performance analysis; Network mea-
surement; • Security and privacy→Security protocols.

Keywords
networks, network performance, security, privacy

ACMReference Format:
Austin Hounsel, Kevin Borgolte, Paul Schmitt, Jordan Holland, and Nick
Feamster. 2020. Comparing the Effects of DNS, DoT, and DoH on Web Per-
formance. InProceedings ofTheWebConference 2020 (WWW’20),April 20–24,
2020, Taipei, Taiwan.ACM, NewYork, NY, USA, 12 pages. https://doi.org/10.
1145/3366423.3380139

Thispaper is publishedunder theCreativeCommonsAttribution 4.0 International (CC-
BY 4.0) license. Authors reserve their rights to disseminate the work on their personal
and corporateWeb sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International WorldWideWeb Conference Committee), published un-
der Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380139

1 Introduction
TheDomainNameSystem (DNS) underpins nearly all Internet com-
munication; DNS queries map human-readable domain names to
corresponding IP addresses of Internet endpoints. Because nearly
every Internet communication is preceded by a DNS query, and
because some applications may require tens to hundreds of DNS
queries for a single transaction, such as a web browser loading a
page, the performance of DNS is paramount. Many historical DNS
design decisions and implementations (e.g., caching, running DNS
over UDP instead of TCP) have thus focused on minimizing the la-
tency of each DNS query.

In the past several years, however,DNSprivacy has become a sig-
nificant concern and design consideration. Past research has shown
thatDNSqueries can reveal various aspects of user activity to eaves-
droppers, including the web sites that a user is visiting [43]. As a re-
sult, various efforts have been developed to send DNS queries over
encrypted transport protocols. Two prominent examples are DNS-
over-TLS (DoT) andDNS-over-HTTPS (DoH). In both cases, a client
sendsDNSqueries to the resolveroveranencrypted transport (TLS),
which relies on the Transmission Control Protocol (TCP).

The use of encrypted transports makes it impossible for passive
eavesdroppers to observe DNS queries on a shared network, such
as a wireless network in a coffee shop. These transports also allow
clients to send encrypted DNS queries to a third-party recursive
resolver (e.g., Google or Cloudflare), preventing a user’s ISP from
seeing the DNS queries of its subscribers. As such, from a privacy
perspective, DoT andDoH are attractive protocols, providing confi-
dentiality guarantees that DNS previously lacked.

On the other hand, encrypted transports introduce new perfor-
mance costs, including the overhead associated with TCP and TLS
connection establishment, as well as additional application-layer
overhead. The extent of these performance costs is not well under-
stood. An early preliminary study by Mozilla found that queries
with DoH are only marginally slower than conventional DNS over
port53 (Do53) [26].However,Mozillaonlymeasuredqueryresponse
times, which does not reflect the holistic end-user experience.

In this paper, we measure how encrypted transports for DNS af-
fect end-user experience inwebbrowsers.Wefind thatDNSqueries
are typically slower with encrypted transports. Much to our sur-
prise, however,we discovered that usingDoT andDoHcan result in
faster page load times compared to usingDo53.When exploring the
underlying reasons for this behavior, we discovered that encrypted
transports have previously ignored quirks that significantly affect
application performance. For example, when DNS queries are sent

https://doi.org/10.1145/3366423.3380139
https://doi.org/10.1145/3366423.3380139
https://doi.org/10.1145/3366423.3380139


WWW ’20, April 20–24, 2020, Taipei, Taiwan Austin Hounsel, Kevin Borgolte, Paul Schmitt, Jordan Holland, and Nick Feamster

over a lossynetwork,DoTandDoHcan recover faster thanDo53be-
causeTCPpackets canbe retransmittedafter 2x the round-trip-time
latency to a recursive resolver.

On networks with sub-optimal performance however, these pro-
tocols begin to suffer because of their connection and transport
overhead. The relative costs and benefits of a particular DNS trans-
port protocol and its implementation forDNS query response times
and web page load times ultimately depend on the underlying net-
work conditions.This variability suggests that in somecases, clients
(i.e., operating systems or browsers) might consider using different
transport protocols for DNS based on their varying cost, perfor-
mance, and privacy trade-offs. Our findings also suggest easy im-
provements to stub resolver and browser DNS implementations.

In this paper, we make the following contributions:

• We provide a performance study of Do53, DoT, and DoH from
five global vantage points.Wemeasure query response times
and page load times using popular open recursive resolvers,
as well as resolvers provided by local networks.

• We show that encrypted DNS transports can lead to faster page
load times than unencrypted DNS. We find that DNS query
response times for DoT and DoH are generally slower than
Do53. Surprisingly, on lossy network conditions, page load
times canbe fasterwhenusingDoTandDoH insteadofDo53.
We attribute this behavior to differences in retransmission
times between UDP and TCP.

• Wegive applicable insights to optimizeDNSperformance.Dur-
ing our measurements, we observed behavior in DNS im-
plementations that could be capitalized on for performance.
Based on these insights,we propose twooptimizations:wire-
format caching and opportunistic partial responses.

2 Background
At a high level, the process for resolving domain names into IP ad-
dresses works in several steps. A client queries a recursive resolver
(“recursor”), for example, “what is the IP address for example.com?”
The client has traditionally been a stub resolver, which is a light-
weight process thatmanagesDNS interactionswith the global DNS
infrastructure. If the recursor does not have an answer for the do-
main name cached, it will issue the query on the client’s behalf to
upstream servers in the DNS hierarchy, including the root, TLD,
and ultimately authoritative servers for a given domain. Once the
answer is returned to the recursor, the recursor caches the response
and sends it to the client.

Due to the historical origins of theDNS, there are several privacy
problems thatwere not originally considered [4]. For example, DNS
queries sent overport 53 (or “Do53”) are typicallyunencrypted.This
means that any eavesdropper listening to traffic between the client
and a recursor can seewhat queries the client ismaking. Such infor-
mation can be used to reveal personal information, such as brows-
ing patterns and client device types, which can then be used to link
user identity with user traffic. While recursors themselves could
also observe every query a clientmakes, recent protocols have been
introduced to (at least) improve privacy for DNS traffic in transit
between clients and DNS servers.

Hu et al. proposed DNS-over-TLS (or “DoT”) in 2016 to prevent
eavesdroppers from observing DNS traffic between a client and a

recursor [21]. It works largely similar toDo53, but theDNS traffic is
sent over an established TLS connection, whichmeans that it relies
onTCPbydefault rather thanonUDP.Once the connection is estab-
lished, all queries are encrypted by the transport sent over port 853.
Although DoT is relatively new, it has seen a significant increase in
popularity since its introduction as some operating systems, such
as Android, have started to use DoT opportunistically [23].

In 2018, Hoffman et al. proposed DNS-over-HTTPS to prevent
on-pathmanipulation ofDNS responses [20]. DoH is similar toDoT,
but uses HTTP as the transport protocol instead of TCP. Wire for-
mat DNS queries and responses are sent using HTTP, and client ap-
plications and servers are responsible for translating between the
application-layer messages and traditional DNS infrastructure. An
argument forDoHversusDoThas surrounded anti-censorship con-
cerns, as DoH uses port 443 compared with port 853. Oppressive
regimes sometimes censor the Internet by droppingDNS traffic, but
DoH requires a malicious network operator to drop all HTTPS traf-
fic (on port 443) to prevent name resolution.

In thispaper,wedonot investigate theprivacyoranti-censorship
properties offered by each protocol. Rather, we are focus on the ef-
fects that Do53, DoT, and DoH have on web performance and ana-
lyzing their respective costs and benefits.We believe suchmeasure-
ments are necessary for users to make informed decisions about
protocol choice for this crucial function of the Internet.

3 Method
In this section, we define our performancemetrics, explain howwe
measure them, and describe our experiment setup.

3.1 Metrics
TounderstandhowDo53,DoT,andDoHaffectbrowserperformance,
we measure page load times and DNS query response times. Page
load times are gathered throughMozilla Firefox, and DNS query re-
sponse times are gathered using a custom tool.

3.1.1 Page Load Time We use Mozilla Firefox 67.0.1 in headless
mode controlled by Selenium to visit a list of websites andmeasure
page load times. We record page load times by inspecting HTTP
Archive objects (HARs), which can be collected after a page has
finished loading [41]. In particular, we extract the onLoad timing
from each HAR, which measures the elapsed time between when a
page loadbegan towhen theloadeventwasfired.Ourmeasurement
suite is packagedas aDocker image to enable reproduciblemeasure-
ments, and to clear the browser’s HTTP cache between page loads.

The load event is fired when a web page and all of its resources
have completely loaded. It is specified in theHTMLLiving Standard
and has been implemented by allmajor browser vendors [30]. It has
also been used to measure page load times in previous web perfor-
mance research [6, 13]. A similar event is DOMContentLoaded, which
is fired when the HTML for a web page has been loaded and parsed
by the browser. However, unlike the load event, it does not include
the time for downloading each object on the page, which is neces-
sary to understand howDNS protocols affect page load times [28].

Another metric is above-the-fold time (AFT), which represents
the time it takes to download and render content that is initially
viewablewithin the browser’s dimensions.Themotivation formea-
suring AFT is that users may perceive a page load to have finished



Comparing the Effects of DNS, DoT, and DoH onWeb Performance WWW ’20, April 20–24, 2020, Taipei, Taiwan

before all theobjects havebeen rendered.However, tomeasureAFT,
we would need to visually record the start time and end time of
rendering within the browser’s dimensions for each page load [39].
Given the large-scale nature of our measurements, this would be
too cumbersome to measure.

3.1.2 DNSQuery Response Time To obtain precise, accurate DNS
query response times, we built a tool with the getdns and libcurl
C libraries to issue Do53, DoT, and DoH queries. We measure re-
sponse times for each unique domain in the HARs that we collect.
Importantly, we do not cache DNS responses with our tool.

Getdns is a library that provides a modern API for making Do53
and DoT queries in various programming languages [19]. To simu-
lateFirefoxpage loads,weenabledconnectionreuse forDoTwithan
idle timeout of 10 seconds in order to amortize the TCP handshake
andTLS connection setup.Although Firefox does not currently sup-
port DoTwithin the browser, we believe this is a realistic setting, as
it is the default timeout used by DoT stub resolvers such as Stubby.
We also ensure that all Do53 queries are made over UDP.

Libcurl is a library that allows developers to use cURL features
in their applications [38]. It supports POST requests over HTTPS,
which can be used tomakeDoHqueries after adding theMIME type
“application/dns-message”. To issue DoH queries, we also enabled
connectionreuse, andwesent thequeriesoverHTTP/2,which is the
recommended minimum HTTP version for DoH [20]. We indepen-
dently verified that Firefox uses HTTP/2 through a packet capture
with mitmproxy andWireshark [11, 9]).

Although HARs also provide DNS query response times, we dis-
covered during the course of our experiments that the timings for
individual components, including DNS query response times, are
inaccurate. For example, we discovered that the first query that a
HAR contains can show DNS timings of 0 ms, even in cases where
it is impossible because we begin every browsing session with an
empty cache.This is the case because, depending on how a website
issuesHTTP redirects, the first query in theHAR is not actually the
first query that the browser performed. Instead, the browser might
have performed a variety of other HTTP requests and DNS queries
before, which may still be in-progress or already cached.

Interestingly, this peculiarity not only results in timings of 0 ms,
but other values as well. The browser may issue multiple requests
to the same domain at different times through its thread pool, with
the first one being redirected (thus, itself not being in the HAR, and
the redirection target having a timing of 0 ms), and other requests
made in between resolving thenameof the domain for the domain’s
first request. In turn, the subsequent requests can be answered from
the cache that the first request populated.However, the first request
does not appear in the HAR. Depending on when the requests are
made,which depends on factors such as rendering time, the timings
can take any value and shift the timings to the left.This would even
be the case if we would use the maximum of all values, because the
first request that triggers resolving the domain may not be present
in the HAR.

3.2 Experiment Setup
To ensure that our results representative of diverse network con-
figurations, we perform measurements across multiple recursors
and vantage points. In addition to performing measurements from

our instances in their default network conditions, we emulate cel-
lular performance by applying traffic shaping. This also enables us
to understand how Do53, DoH, and DoT perform under poor net-
work conditions, e.g. high latency and packet loss. We describe our
hardware and software configuration, choices of recursors, vantage
points, network conditions, and websites below.

3.2.1 Hardware and Software WedeployedAmazonEC2 instances
with the m5.2xlarge hardware configuration and the Debian Buster
operating system.1 Each instance includes 32GB of RAM, a 3.1 GHz
Intel Xeon Platinum Processor (8 vCPU cores), and 10 Gbps of net-
workbandwidth[1].ThemachinesareconnectedoverEthernet, and
they run ameasurement suite designed to collect page load times as
well as DNS query response times.2 We deploy our Docker image
and DNS tool across all machines. We left all network settings in
their default values for Firefox 67.0.1, exceptwhenwe enabledDoH
by setting network.trr.mode = 3. This forces all DNS queries initi-
ated by Firefox to be sent over DoH [37]. Importantly, Firefox 67.0.1
disables EDNS Client Subnet by default for their DoH implementa-
tion and enables DNS pre-fetching.

3.2.2 DNSRecursors and Transport Protocols Wemeasure how the
selection of a recursor and DNS transport affect browser perfor-
mance. As such, we chose three popular public recursors: Google,
Quad9, and Cloudflare. Each resolver offers public name resolution
for Do53, DoT, and DoH.We also use the local recursor provided to
our Amazon EC2 instances at each vantage point. However, these
recursors only supports Do53, and not DoT or DoH.Thus, these re-
cursors serve as baseline for browser performance over Do53.

Do53 andDoH are natively supported in Firefox, the browserwe
use to drive our page load time measurements. However, as of Oc-
tober 2019, DoT must be configured by using a stub resolver on a
user’s machine outside of Firefox. For our page load time measure-
ments, we use Stubby for DoT resolution, a stub resolver based on
the getdns library [16]. Stubby listens on a loopback address and
responds to for Do53 queries. All DNS queries received by Stubby
are then sent out to a configured recursor over DoT. We modify
/etc/resolv.confonourmeasurement systems to point to the loop-
back address served by Stubby.This forces all DNS queries initiated
by Firefox to be sent over DoT.

Wenote that our goal is to performnatural experiments by using
popular recursors that end-users choose. As such, we are not able
to control the caches of the recursors between measurements. To
avoid biasing results due to network quiet and busy times, as well
as the potential effect of a query warming the recursor’s cache for
subsequent queries from the other protocols tested, we randomize
several aspectsof themeasurement suite. First, for each run through
the list of websites, we shuffle the order of websites prior to brows-
ing. Next, for each individual website, we randomize the order of
DNS protocol as well as the DNS provider.

3.2.3 Provider Networks Our goal is to understand relationships
between page load times, DNS performance, and network perfor-
mance. DNS performance is greatly affected by a client’s Internet
service provider (ISP), as their network configuration determines

1We considered using PlanetLab for our measurements, but ultimately decided to use
Amazon EC2 because we felt that we would get better performance guarantees.
2Our tools are available at https://github.com/noise-lab/dns-measurement-suite.

https://github.com/noise-lab/dns-measurement-suite


WWW ’20, April 20–24, 2020, Taipei, Taiwan Austin Hounsel, Kevin Borgolte, Paul Schmitt, Jordan Holland, and Nick Feamster

the paths the DNS traffic will use to reach a resolver (should the
client opt to use a resolver that is hosted outside of the ISP network).
To gain a general understanding of how DoH, DoT, and Do53 per-
form over different networks, wemeasure response times and page
load times from five vantage points around the world.We use Ama-
zon EC2 to launch instances located in Ohio & California (United
States of America), Frankfurt (Germany), Sydney (Australia), and
Seoul (South Korea).

3.2.4 Emulated Network Conditions We are also interested in web
performance over networks that exhibit packet loss or high latency.
We believe it is important to simulate cellular performance as an
increasing number of users are browsing the web on their phones.
Furthermore, organizations likeCloudflarehave releasedmobile ap-
plications to force the operating system touse encryptedDNS trans-
ports.Weperformourmeasurementsusing thedefaultnetworkcon-
ditions for our instances and three emulatedmobile network condi-
tions. We dedicate an EC2 instance for each network condition at
all vantage points, for a total of 20 instances.

To emulated mobile network conditions, we first apply traffic
shaping to emulate 4Gmobile network performance.We shape out-
going traffic with an additional latency of 53.3 ms and jitter set to
1 ms. We also dropped 0.5% of packets to mimic the loss that cel-
lular data networks can exhibit. We then shape our uplink rate to
7.44 Mb/s and our downlink rate to 22.1 Mb/s. These settings are
basedonanOpenSignal report ofmobilenetworkexperience across
providers [15]. Second, we apply traffic shaping to emulate a lossy
4G network. We use the same latency and jitter settings as 4G, but
we increase the loss rate to 1.5% of packets. For the remainder of
the paper, we refer to this network condition as ”lossy 4G.” Finally,
we apply traffic shaping to emulate 3G network performance by
adding 150 ms or latency and 8 ms of jitter, along with 2.1% packet
loss and uplink and downlink rates of 1 Mb/s each. While users in
well-connected areas are less likely to experience 3G performance,
it remains prevalent globally, particularly in developing regions.

3.2.5 Websites We collect HARs (and resulting DNS queries) for
the top 1,000websites on the Tranco top-list to understand browser
performance for the average user [24] visiting popular sites. Fur-
thermore, we measure the bottom 1,000 of the top 100,000 websites
(ranked 99,000 to 100,000) to understand browser performance for
websites that are less popular. We chose to measure the tail of the
top 100,000 instead of the tail of the top 1 million because we found
through experimentation thatmanyof thewebsites in the tail of the
top 1million were offline at the time of our measurements. Further-
more, there is significant churn in the tail of top 1 million, which
means that we would not be accurately measuring browser perfor-
mance for the tail across the duration of our experiment.

3.3 Limitations
Ourresearchhassome limitations thatmayaffect thegeneralization
of our results. Nonetheless, we argue that our work will further the
research community’s understanding of how DNS affects user ex-
perience, and how various DNS stakeholders can improve it. First,
we perform our measurements exclusively on the Debian operat-
ing system, which means that its networking stack and parameters
for networking algorithms will affect our measurements. However,

networking stacks are often heavily optimized, so we expect our
results to generalize across operating systems. Second, we rely on
Mozilla Firefox to measure page load times, which means that its
DNS-related code will influence our results. Considering that web
browsers are among the most used software today and also highly
optimized for performance, we also expect our results to generalize
across browsers. Finally,we conduct our experiments fromAmazon
EC2 instances, which are located in data centers. On one hand, this
means thatwe are not able to generalize our results across other net-
works, e.g. residential ISPs.On theotherhand,AmazonEC2enables
us to understand how Do53, DoT, and DoH perform with a certain
network type from five global vantage points.

4 Measurement Results
Our measurements were performed continuously from September
17th, 2019 through October 12th, 2019 using the setup described in
Section 3.Wedid not introduce delay between each successive page
load or only perform page loads at certain times of the day. In this
section, we describe our measurement results for query response
times and page load times, and analyze the protocols to understand
the performance. These results provide some insight into how a
user’s choice of networks, recursors, and protocols affect browsing
experience. Due to space constraints, we are unable to provide plots
for each of our five vantage points. Instead, we highlight our van-
tage points in Frankfurt and Seoul.

From Frankfurt, the average latency to the anycast addresses for
Cloudflare,Quad9, andGooglewas1.03ms, 1.42ms, and1ms, respec-
tively. From Seoul, the average latency to the anycast addresses for
Cloudflare, Quad9, and Google was 26.65ms, 1.95ms, and 30.22ms,
respectively.These measurements were obtained by sending ICMP
pings toeachrecursoraftereachattemptedpage load.Unfortunately,
the Amazon EC2 recursors in each vantage point dropped ICMP
pings, so we were unable to to measure the latency from our in-
stances to the recursors. Nonetheless, given that ourmeasurements
were conducted from Amazon EC2 instances, the average latency
to an Amazon EC2 recursor from each vantage point is likely lower
than Cloudflare,Quad9, and Google.

4.1 DNSQuery Response Time
Intuitively,DNSqueryresponse time is themostcriticalmetricwhen
characterizing DNS performance, as web pages typically include
many objects (e.g., images, JavaScript, frames, etc.), which all must
have theirunderlying servernames resolved to IPaddresses. Indeed,
previous work has shown that DNS queries can cause performance
bottlenecks on website page loads [42]. Accordingly, we begin our
study with the response times for our network environments.

We note that Mozilla conducted a measurement study of DoH
query response times in 2018 with Firefox Nightly users. In their
measurement study, they found thatmost queries were 6ms slower
than Do53 queries, and that DoH actually has faster response times
than Do53 for the slowest queries [26]. However, Mozilla’s experi-
ment was limited to Cloudflare’s DoH recursor, and they report no
data for other recursors, likeQuad9 and Google. Furthermore, they
only measure DoH, leaving out DoT entirely.

To fill these gaps and independently validate Mozilla’s results,
we designed our own experiment to measure response times for



Comparing the Effects of DNS, DoT, and DoH onWeb Performance WWW ’20, April 20–24, 2020, Taipei, Taiwan

Do53, DoT, and DoH across different networks and recursors. For
each HAR file that we collected with our automated browser, we
extracted all unique domain names. We then measure the response
timeforeachdomainnamethroughourowntool,whichusesgetdns
for Do53 and DoT queries, and libcurl for DoH queries.

Figure 1 shows CDFs for DNS response times from Frankfurt
for the top 1,000 websites and the top 99,000-100,000 websites com-
bined. As expected, we find that Do53 performs better than DoT
and DoH on for most queries across all recursors. The overhead in-
troduced by encrypted transports for DoT andDoH generally leads
to an increase in response time. Interestingly, we find that DoH is
slightly faster than Do53 for the slowest queries across all public
recursors. For example, with Cloudflare Do53, the mean response
time is≈34ms, and the standarddeviation is≈347ms.However,with
CloudflareDoH, themean response time is≈40ms, and the standard
deviation is ≈94ms. We posit that this can be attributed to HTTP
caching of the DNS wire-format, which we discuss more in 5.2.

ComparingDoTwithDoH,weseedifferencesbetweenproviders.
CloudflareDoTandDoHappear to performequally for themajority
of queries, though DoH begins to outperform DoT for queries that
take longer than ≈50ms. Google DoT generally outperforms DoH
for queries that take less than ≈100ms, above which DoH performs
better.Quad9 shows the largest range in termsof performance,with
DoTqueriesexperiencing long latenciescompared toall other recur-
sors and protocols. Quad9’s DoH recursor tends to perform better
in comparison, but still lags behind their Do53 service.

4.2 Page Load Time
Based on our results for query response times, we expect page load
times to follow a similar pattern, with Do53 outperforming both
DoT and DoH. Figure 2 shows CDFs for differences in page load
timesbetweeneachconfigurationwhenrunningourmeasurements
from Frankfurt. The vertical line on each subplot indicates the me-
dian for the CDF. A median that is less than 0s on the x-axis means
that the configuration (recursor, protocol) specified by the row title
is faster than the configuration specified by the column title (indi-
cated in blue hues). Correspondingly, a median that is greater than
0s on the x-axis means that the configuration specified by the row
title is slower than the configuration specified by the column title
(indicated in red hues). Finally, amedian that is close to 0s (between
-30ms and 30ms) indicates that row configuration and column con-
figuration perform similarly.

Interestingly, for Cloudflare, each protocol finished within 30ms
of each other for the median page load time. These results stand in
contrast to our expectation that page load times for DoT and DoH
would be slower than Do53 due to additional latency for individual
queries.We posit that Cloudflare Do53, DoT, andDoH perform sim-
ilarly in page load times because Firefox can resolvemultiple names
at once. For Do53 and DoT, Firefox resolves names synchronously
with a thread pool [29]. Queries are sent via the operating system
through through getaddrinfo()) [31]. Furthermore, Firefox’s DoH
implementation is asynchronous, and it uses the browser’s opti-
mized HTTP/2 implementation [34, 33]. This means that DoHmay
be able to make up for its larger overhead compared to Do53 and
DoT because page loads won’t be blocked by synchronous queries
if the thread pool is exhausted.

We find that Cloudflare Do53 and Google Do53 perform faster
than the localDo53 recursor inmedianpage load times.Weattribute
this behavior to the caches ofCloudflare andGooglemoreoften con-
taining the domain nameswemeasured than the local recursor. For
example, as a CDN, Cloudflare is able to more quickly respond to
DNS queries for domain names that they host than the other re-
cursors [8]. Cloudflare and Google also offer two of the most popu-
lar DNS services in the world, with 0.74% and 9% of users configur-
ing their Do53 recursors, respectively. This enables Cloudflare and
Google to quickly respond to Do53 queries for a very large set of
websites. On the other hand, the local Do53 recursor was provided
by Amazon for EC2 instances, which may not be used as often to
query the domains of websites.

We also find that Google DoH performs significantly worse than
all other DNS recursors or protocols from Frankfurt. For example,
when using Google DoH instead of Cloudflare DoH–the same web-
site loads 1.35s slower in the median case. It may be the case that
Google DoH’s caching backend differs from their Do53 and DoT
backends, which leads to longer page load times.We note that as of
October 2019, Google was in the process of migrating their DoH de-
ployment to their production anycast address (8.8.8.8), and to fully
support RFC 8484 [18]. During our experiments, we used the 8.8.8.8
anycast address and Google’s production URI (https://dns.google/
dns-query) to issueDoHqueries, as advised in their documentation.

Similarly, Quad9 DoT performs worse in page load times than
all recursors besides Google DoH, and a website loads 121ms faster
using Cloudflare DoT over Quad9 DoT. We offer several possible
explanations. For example,Quad9 DoT may not correctly cache re-
sponses, which leads to stacked normal distributions for the con-
nection to the recursor. This coincides with our data shown by Fig-
ure 1b, in which only ≈20% ofQuad9 DoT queries completed in un-
der 100ms. Another possible explanation is that the recursor is try-
ing to connect to authoritativenameserversviaDoT,which fails and
then triggers a retry via Do53. Initially, whenwe disclosed our find-
ings toQuad9,wedidnot receive an explanation.However,wewere
later informed that their DoT implementation was being changed.

4.3 Effect of Network Conditions
We also study how network conditions affect query response times
and page load times for Do53, DoT, and DoH. Our results in Sec-
tion 4.1 and Section 4.2 are based onmeasurements conducted from
a well-connected network in Frankfurt. However, cellular network
users in developing regions often access the Internet through net-
works with high latency and significant loss. We expect such less-
than-ideal conditions of these networks may significantly affect
how Do53, DoT, and DoH perform.

Figure3aandFigure3b showCDFs forquery response timeswith
Cloudflare’s recursor on an emulated cellular 4G network and an
emulated lossy cellular 4Gnetwork.We focus onCloudflare’s recur-
sor because it performs better thanQuad9 andGoogle (Figure 1 and
Figure 2). On each emulated cellular network, Do53 outperforms
DoT and DoH in terms of response time. Interestingly, it appears
that DNS timings on a cellular 4G and lossy cellular 4G network are
similar, independent of the additional 1% loss.

Figure 3c shows CDFs for response times for 3G network charac-
teristics,whichhavehigher loss, higher latency, and less bandwidth

https://dns.google/dns-query
https://dns.google/dns-query


WWW ’20, April 20–24, 2020, Taipei, Taiwan Austin Hounsel, Kevin Borgolte, Paul Schmitt, Jordan Holland, and Nick Feamster

0 100 200 300 400 500 600
DNS Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Default Do53
Cloudflare Do53

Cloudflare DoH
Cloudflare DoT

0 1500
0

1

(a) Cloudflare

0 100 200 300 400 500 600
DNS Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Default Do53
Quad9 Do53

Quad9 DoH
Quad9 DoT

0 1500
0

1

(b)Quad9

0 100 200 300 400 500 600
DNS Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Default Do53
Google Do53

Google DoH
Google DoT

0 1500
0

1

(c) Google

Figure 1:Query response times for each provider from Frankfurt.

0.0

0.5

1.0
A

Default Do53

1
Default Do53

2
Quad9 Do53

3
Quad9 DoT

4
Quad9 DoH

5
Google Do53

6
Google DoT

7
Google DoH

8
Cloudflare Do53

9
Cloudflare DoT

10
Cloudflare DoH

0.0

0.5

1.0
B

Quad9 Do53

0.0

0.5

1.0
C

Quad9 DoT

0.0

0.5

1.0
D

Quad9 DoH

0.0

0.5

1.0
E

Google Do53

0.0

0.5

1.0
F

Google DoT

0.0

0.5

1.0
G

Google DoH

0.0

0.5

1.0
H

Cloudflare Do53

0.0

0.5

1.0
I

Cloudflare DoT

-10 -10 1 10

0.0

0.5

1.0
J

Cloudflare DoH

-10 -10 1 10 -10 -10 1 10 -10 -10 1 10 -10 -10 1 10 -10 -10 1 10 -10 -10 1 10 -10 -10 1 10 -10 -10 1 10 -10 -10 1 10

x ≤ -1s -1s < x ≤ -0.1s -0.1s < x ≤ -0.03s -0.03s < x < 0.03s 0.03s ≤ x < 0.1s 0.1s ≤ x < 1s x ≥ 1s

Figure 2: CDFs for differences in page load times between each configuration from Frankfurt.



Comparing the Effects of DNS, DoT, and DoH onWeb Performance WWW ’20, April 20–24, 2020, Taipei, Taiwan

0 100 200 300 400 500 600
DNS Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Default Do53
Cloudflare Do53

Cloudflare DoH
Cloudflare DoT

0 1500
0

1

(a) 4G network

0 100 200 300 400 500 600
DNS Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Default Do53
Cloudflare Do53

Cloudflare DoH
Cloudflare DoT

0 1500
0

1

(b) Lossy 4G network

0 100 200 300 400 500 600
DNS Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Default Do53
Cloudflare Do53

Cloudflare DoH
Cloudflare DoT

0 1500
0

1

(c) 3G network

Figure 3:Query response times for Cloudflare across each protocol on three emulated networks

Cloudflare
Connectivity Status Do53 DoT DoH

Successful 78.70% 78.65% 78.85%
Page-load Timeout 7.48% 7.47% 7.21%
DNS Error 9.51% 9.46% 9.90%
Selenium Error 1.69% 1.74% 1.78%

Default

Other Error 2.62% 2.67% 2.27%
Successful 80.02% 79.71% 78.61%
Page-load Timeout 7.86% 7.75% 7.22%
DNS Error 9.02% 9.00% 9.77%
Selenium Error 1.84% 1.67% 1.86%

4G network

Other Error 1.26% 1.87% 2.53%
Successful 78.29% 78.13% 76.95%
Page-load Timeout 8.24% 8.16% 8.01%
DNS Error 9.95% 9.95% 10.76%
Selenium Error 1.99% 1.96% 2.01%

Lossy 4G network

Other Error 1.54% 1.80% 2.28%
Successful 28.10% 27.87% 20.06%
Page-load Timeout 60.02% 60.31% 41.32%
DNS Error 9.83% 9.76% 37.15%
Selenium Error 1.65% 1.54% 1.07%

3G network

Other Error 0.40% 0.51% 0.40%

Table 1: Successful website page-loads and error percentages
for different network conditionswhen usingCloudflare’s re-
cursor from Frankfurt.

than 4G networks, and, in turn, we expect it affects DNS perfor-
mance dramatically. We find that DoT and DoH response times are
substantially longer thanDo53 response times.The fastest DoT and
DoH queries take ≈450ms and ≈600ms, respectively, where as the
fastestDo53 queries take≈150ms. In fact, even the slowestDoHand
DoTqueries never close the latency gap to the slowestDo53 queries.

Based on the differences we observed in response times, we ex-
pected page load times on the emulated networks to be better with
Do53 than with DoT or DoH. Figure 4 compares page load times
across all of our networks and protocols for Cloudflare’s recursors.
Interestingly, on the 4G network, the median page load with DoT

performs 11ms faster than Do53, and DoH performs 58ms slower.
On the lossy 4G network, DoT and DoH are faster than Do53. DoT
performs 101ms faster than Do53, and DoH performs 33ms faster.

Itmayseemcounter-intuitive thatpage loadsusingDoTandDoH
perform these ways on the 4G and lossy 4G networks due to sub-
stantially longer queries (Figure 3).However, the differences in how
DNS timeouts are handled between TCP and UDP offer a possible
explanation. For example, the default timeout for Do53 queries in
Linux is set to 5 seconds by resolvconf [22]. ForDoT andDoH,DNS
packets may be retransmitted after 2x the round-trip-time latency
to a recursor because of TCP. If the round-trip time to a recursor is
on the order of hundreds of milliseconds, then DoT and DoH will
more quickly re-transmit dropped packets than Do53.

However, as throughput decreases and loss increases on a 3Gnet-
work, DoT and DoH are no longer able to perform as well as Do53
concerning website page loads. We believe this can be attributed to
their higher overhead in bytes sent compared to Do53, which con-
tributes to link saturation for most websites. DoH also has a higher
overhead than DoT, which leads to significantly slower page loads
(Figure 4d and Figure 4h). Furthermore, not only aremore bytes are
sent with DoT and DoH, but high latency and random packet loss
significantly affect TCP performance [25].

Table 1 shows the prevalence and types of errors we encoun-
tered during our page load measurements. Overall, we see that in
lossier conditions, DoH experiences higher failure rates compared
with Do53. For instance, using the 3G settings, Cloudflare Do53 has
≈8% less page load timeouts compared to Cloudflare DoH. We also
see thatDNS errors spike forDoH in poor network conditions. Con-
versely, DoT tends to maintain higher rates of success compared
with DoH. We note that there is a higher success rate in page loads
with the 4G network condition compared to the default network
condition. It is not clear to uswhat caused this outcome.We empha-
size that our 4G, lossy 4G, and 3G network conditions were emu-
lated; we did not performmeasurements on real mobile networks.

4.4 Trends Across Vantage Points
Due to space constraints, we are unable to fully explore our results
from other vantage points. However, we observed that Cloudflare
DoH and DoT were able to perform comparably to and sometimes



WWW ’20, April 20–24, 2020, Taipei, Taiwan Austin Hounsel, Kevin Borgolte, Paul Schmitt, Jordan Holland, and Nick Feamster

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoT - Cloudflare Do53

(a) DoT - Do53, Frankfurt’s de-
fault network

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoT - Cloudflare Do53

(b) DoT - Do53, 4G network

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoT - Cloudflare Do53

(c) DoT - Do53, lossy 4G network

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoT - Cloudflare Do53

(d) DoT - Do53, 3G network

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoH - Cloudflare Do53

(e) DoH - Do53, Frankfurt’s de-
fault network

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoH - Cloudflare Do53

(f) DoH - Do53, 4G network

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoH - Cloudflare Do53

(g) DoH -Do53, lossy 4Gnetwork

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoH - Cloudflare Do53

(h) DoH - Do53, 3G network

Diff ≥ 1s 0.1s ≤ Diff < 1s 0.03s ≤ Diff < 0.1s -0.03s < Diff < 0.03s -0.1s < Diff ≤ -0.03s -1s < Diff ≤ -0.1s Diff ≤ -1s

Figure4:Comparisonofpage load timesbetweenprotocols andnetworkconditionsusingCloudflare’s recursors fromFrankfurt

better than Do53 on emulated cellular networks, regardless of the
vantage point thatwas chosen. In this section,we explore page load
times on emulated network conditions in Seoul.

Figure 5 compared page load times between protocols and net-
work conditions using Cloudflare’s recursor from Seoul. Cloudflare
DoT and DoH are slower than Do53 in page load times for the de-
fault network condition. DoT performs 1ms slower than Do53 in
themedian case, andDoHperforms 79ms slower thanDo53. On the
4G network, DoT andDoH performs similarly to how they perform
without traffic shaping. DoT performs 1ms slower than Do53 in the
median case, and DoH performs 70ms slower than Do53.

On the lossy 4G network, DoT grows increasingly faster than
Do53, and DoH begins to close the gap. DoT performs 45ms faster
thanDo53 in themedian case, andDoH performs 12ms slower than
Do53. As previously discussed, we attribute this improved perfor-
mance to TCP re-transmitting packets faster than UDP timeouts.
However, page load times with DoT and DoH are both worse than
Do53 on an emulated 3G network in Seoul. DoT performs 175ms
slower than Do53 in the median case, and DoH performs 265ms
slower thanDo53.Again,weattribute thisbehavior toDoTandDoH
queries contributing to link saturation.

As with Frankfurt, we see that in lossier conditions, DoH experi-
ences higher failure rates compared with Do53. 3 On the emulated
3Gnetwork,CloudflareDo53has≈21% less page load timeouts than
CloudflareDoH.DoT also continues tomaintain higher rates of suc-
cess than DoH, with ≈21% less page load timeouts. Lastly, DNS er-
rors for DoH spike on the emulated 3G network, with≈38% of page

3Due to space constraints, we can not include the full failure table for Seoul.

loads failing as a result.Weattribute theseDNSerrors to query time-
outs.

The general trend we observe is that page load times with DoT
and DoH can improve compared to Do53 in the face of packet loss
and high latency. However, as network conditions degrade, DoT
andDoHbothperformsignificantlyslower thanDo53.Furthermore,
page loads with DoH fail much more often than Do53 and DoT on
emulated 3G network conditions.We note thatwe are notmaking a
recommendation about which protocol or recursor to use. We also
can not generalize our results to vantage points that we have not
measured. Nonetheless, our results show that your network and
choice of DNS transport matter for web performance.

5 Discussion
Based on our results, we offer several insights to improve Do53,
DoT, and DoH resolution times, which can reduce page load times
and improveuser experience.Wefirst propose opportunistic partial
responses, followed by wire-format caching. We then discuss how
dropping support for EDNS Client-Subnet at public recursors may
improve page load times.

5.1 Opportunistic Partial Responses
Wediscovered thatcurrentDNSclientsdonotutilizepartof theDNS
Internet Standard that could improve client performance and user
experience. Unfortunately, the three public recursors we measured
violate the standard [27] by not supporting queries with more than
one question (QDCOUNT > 1). Cloudflare and Quad9 do not respond,
and Google only responds to the first question.



Comparing the Effects of DNS, DoT, and DoH onWeb Performance WWW ’20, April 20–24, 2020, Taipei, Taiwan

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoT - Cloudflare Do53

(a) DoT - Do53, Seoul’s default
network

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoT - Cloudflare Do53

(b) DoT - Do53, 4G network

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoT - Cloudflare Do53

(c) DoT - Do53, lossy 4G network

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoT - Cloudflare Do53

(d) DoT - Do53, 3G network

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoH - Cloudflare Do53

(e) DoH - Do53, Seoul’s default
network

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoH - Cloudflare Do53

(f) DoH - Do53, 4G network

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoH - Cloudflare Do53

(g) DoH -Do53, lossy 4Gnetwork

-10 -1 0 1 10
Page Load Time Difference (seconds)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Cloudflare DoH - Cloudflare Do53

(h) DoH - Do53, 3G network

Diff ≥ 1s 0.1s ≤ Diff < 1s 0.03s ≤ Diff < 0.1s -0.03s < Diff < 0.03s -0.1s < Diff ≤ -0.03s -1s < Diff ≤ -0.1s Diff ≤ -1s

Figure 5: Comparison of page load times between protocols and network conditions using Cloudflare’s recursors from Seoul

Without compatible recursors, clients cannot utilize this part of
the standard to send fewer larger queries, and, thus, less bytes due to
reduced overhead. We were unable to discover any reason in RFCs
and on the IETF dnsop and dnsext mailing lists why servers may
misbehave. We speculate that it could be because the DNS Internet
Standard sets the expectation that QDCOUNT is “usually 1” [27].

Naïvely, it appears that there is no reason to support more than
onequestion because itwould delay the response to a queryuntil all
answers have been received, whichmay take multiple seconds and,
in turn, severely degrade user experience. Furthermore, it would ef-
fectively eliminate the benefit of out of order responses that single
question queries enable. Out of order responses are currently im-
plemented inDo53 throughUDP, inDoT through response reorder-
ing [14], and in DoH through HTTP/2’s streammultiplexing [2].

Webelieve that opportunistic partial responses couldbe a solution:
A client indicates that it wants to use partial responses on the first
single question query through a EDNS partial response option, and
theserver confirms if it supports it.Theclient can thensendmultiple
questions in the same query when with the EDNS partial response
option, and the server can respond with individual or multiple an-
swers in a DNS response as authoritative answers arrive. We are
currently exploring authoring a corresponding Internet-Draft.

5.2 Wire Format Caching
Over the courseofmeasurements,we found that Firefoxuses ahard-
coded DNS transaction ID of 0 for its DoH implementation [32],
whichwealsouse in our querymeasurement tool.Weposit that this
could enable DoH recursors to leverage HTTP response caching of

the DNS response’s wire format more aggressively and at the edge.
By fixing a transaction ID at the client, recursors could side-step the
issue of always having to construct aDNS response, instead reading
the wire-format from a local HTTP cache.

The security effect of a fixed transaction ID is limited for DoH
because it relies on TLS, which makes it difficult to inject a spoofed
response that could be used to poison the client’s cache. For DoT,
the same argument can bemade and it is similarly amenable towire
format caching. For Do53, a fixed transaction IDwould allow cache
poisoning, and, hence, it is not a viable solution.

Generally, to improve tail response times, we suggest to cache
the DNS response wire format regardless of transaction ID, and to
simply replace the two byte transaction ID before responding (e.g.,
via XOR), which also has the benefit of being compatible with DoT
clients that send random transaction IDs. It is important to note that
the DNS TTL values of a response also need to be updated (decre-
mented) regularly, and this invalidates the HTTP response or wire
format cache, but by decreasing the TTL bymore than the required
amount, the wire format cache can be kept valid longer.

5.3 EDNS Client-Subnet
Cloudflare’s recursors result in consistently lower page load times
than any other recursor we measured, including the default Do53
recursor provided by Amazon in Frankfurt (Figure 2, H1 through
J10). We posit that Cloudflare’s caching strategy is a core reason
for their better performance. Specifically, their recursors can cache
responses more easily because they do not support EDNS Client-
Subnet(ECS) [7, 10], which Google generally supports [17].



WWW ’20, April 20–24, 2020, Taipei, Taiwan Austin Hounsel, Kevin Borgolte, Paul Schmitt, Jordan Holland, and Nick Feamster

Thepurpose of ECS is to forward the client’s address or network
to the authoritative server via the recursor, which allows the au-
thoritative server to provide a response to the recursor that takes
the client’s address into account, for example to direct it to a server
that is located nearby. By not supporting ECS, Cloudflare’s recur-
sors can have higher cache hit rates, in particular for a client’s first
queries. Specifically, Cloudflare does not need to limit cached re-
sponses to the client’s IP address or network indicated throughECS
in the original query, that is, their cache is client agnostic. On the
contrary, the caches for Google and partiallyQuad9 must be client
specific because of ECS.

Website and CDN operators should therefore consider abandon-
ing DNS-based localization and stop relying on ECS, and instead
adopt anycast. Interestingly, the cost that recursor cache misses in-
cur because of ECS could actually negate the benefits of directing
a user to a local server via ECS in a variety of cases, and even di-
recting him to a single central data center (without anycast) could
lead to a better user experience than ECS. Overall, disabling ECS not
only improves client privacy, but our results show that it may also de-
crease client page load times, leading to an immediate improvement
in a user’s browsing experience.

6 RelatedWork
In this section,wefirst compare to relatedworkonDNSprivacy and
security. We then compare to measurements on how DNS impacts
web performance.

6.1 Encrypted DNS Transports
Zhu et al. [43] introduced DNS over TLS, that is DNS over TLS
over TCP, to provide confidentiality guarantees that DNS lacked.
Theymeasured the performance costs and benefits of sending DNS
queries over aTLS connection, andfind thatDoT response times are
only up 22% slower than Do53. We measure higher DoT response
times whenmeasuring response times naïvely due to fewer queries
being sent and less connection reuse. Different from Zhu et al., our
study focuses on how different DNS transports affect user experi-
ence, through page load times, and how it differs in the face of dif-
ferent network conditions.

Böttger et al.measuredquery response times andpage load times
for Do53, DoT, and DoH from a university network [5]. Unfortu-
nately, their methodology relies on collecting HARs for query re-
sponse time measurements. As we discuss in 3.1.2, HARs can con-
tain invalid response times depending on how re-directs are trig-
gered. This is also evident from Figure 6 in their paper showing a
y-intercept of approximately 10%, which means that for roughly
10% of websites the DNS resolution for all included resources can
be performed sequentially in 0ms.

In addition toDoT andDoH, other protocols have been proposed
to help ensure privacy and security between a client and a recursor.
DNSCryptutilizes cryptographic signatures to authenticate a recur-
sor to a client, which prevents DNS responses from being spoofed
or tampered with [12]. DNSCurve utilizes elliptic-curve cryptogra-
phy to provide confidentiality, authenticity, and integrity ofDNS re-
sponses [3].However, forDNSCrypt,DNSCurve,DoT, andDoH, the
recursor remains aware of what names a client queries for, which
has privacy implications as it allows the recursor to learn about the

websites that the client visits and when it visits them. Schmitt et
al. [36] proposed Oblivious DNS, which prevents a recursor from
associating queries to the clients that sent them. This in turn pre-
vents a recursor from learning the client’s browsing history.

6.2 DNS andWeb Performance
Sundaresan et al. [40] measured and identified performance bottle-
necks for web page load time in broadband access networks and
found that page load times are influenced by slow DNS response
times and can be improved by prefetching. An important distinc-
tion is that they define the DNS response time only as the response
time for the first domain, while we consider the set of unique fully
qualifieddomainnamesof all resources contained inapage.They in-
vestigate only nine high-profile websites, which stands in contrast
to the 2,000 popular and normal websites that we analyze, and they
estimate page load times throughMirage andvalidate their findings
through a headless browser PhantomJS, while we utilize Mozilla
Firefox, which is a full browser. Wang et al. [42] introducedWProf,
which is a profiling system to analyze page load performance.They
identified that DNS queries–in particular uncached, cold queries–
can significantly affect web performance, accounting for up to 13%
of the critical path delay for page load times.

In 2012, Otto et al. [35] found that CDN performance was nega-
tively affected when clients choose recursors that were geographi-
cally separated from CDN caches. They conjectured that this poor
performance was a result of recursors not supporting ECS. Indeed,
ECS was only introduced in January 2011, and it was not standard-
ized until May 2016 [10]. Therefore, clients were likely redirected
to sub-optimal data center based on the recursor’s address or net-
work, instead of the client’s address. Otto et al. proposed namehelp,
a DNS proxy that improves CDN performance for these far away
recursors. It sends DNS queries for CDN-hosted content directly to
authoritative servers, enabling CDNs to use the client’s IP address.
We suspect that with the wide-spread adoption of ECS and anycast
since 2012, CDN performance may not be as negatively affected by
choosing a recursor that is geographically far away from a CDN.

7 Conclusion
In this paper, we investigated DNS timings and page load times
using different DNS transport protocols, recursors, network con-
ditions, and global vantage points. We find that although DoT and
DoHresult in higher response times for individual queries, they can
perform similarly to Do53 in page load times.We also find that DoT
and DoH can outperform Do53 in page load times in emulated cel-
lular network conditions. However, as network conditions degrade,
Do53 significantly outperforms DoT and DoH.Web pages also load
successfully more often with Do53 in poor network conditions.

Based on our findings, DNS stakeholders can take several con-
crete steps to improve query response times, and in turn page load
times. For example, Firefox currently uses synchronous calls for
Do53 andDoT resolution, and asynchronous calls could benefit per-
formance.Another opportunity to improveDo53 andDoT response
times that we discovered is wire format caching. Lastly, clients and
recursors could be extended to support multiple questions in a sin-
gle query and opportunistic partial responses.This could be accom-
plished in a backward compatibleway throughanewEDNSoption.



Comparing the Effects of DNS, DoT, and DoH onWeb Performance WWW ’20, April 20–24, 2020, Taipei, Taiwan

References
[1] Amazon. 2019. Amazon EC2 Instance Types. Retrieved

09/26/2019 from https : / /aws .amazon .com/ec2/ instance-
types.

[2] Mike Belshe, Roberto Peon, and MartinThomson. 2015. Hy-
pertext Transfer Protocol Version 2 (HTTP/2). Technical re-
port 7540. (Proposed Standard). RFCEditor, (May 2015). http:
//www.ietf.org/rfc/rfc7540.txt.

[3] Daniel J. Bernstein. 2009. DNSCurve: Usable Security for
DNS. Retrieved 05/13/2019 from https://dnscurve.org/.

[4] Stephane Bortzmeyer. 2015. DNS Privacy Considerations.
Technical report 7626. (Informational). RFC Editor, (August
2015). http://www.ietf.org/rfc/rfc7626.txt.

[5] Timm Böttger, Felix Cuadrado, Gianni Antichi, Eder Leao
Fernandes, Gareth Tyson, Ignacio Castro, and Steve Uhlig.
2019.Anempirical studyof the cost of dns-over-https. InPro-
ceedings of the 2019 Internet Measurement Conference (IMC).
doi: 10 .1145 /3355369 .3355575. Retrieved 01/22/2020 from
http://eecs.qmul.ac.uk/~boettget/assets/doh-imc19.pdf.

[6] Michael Butkiewicz, Harsha VMadhyastha, and Vyas Sekar.
2011. Understanding website complexity: measurements,
metrics, and implications. InProceedingsof the11thACMSIG-
COMMConference on InternetMeasurement (IMC). Retrieved
10/02/2019 from https://web.eecs.umich.edu/~harshavm/
papers/imc11.pdf.

[7] Cloudflare. 2019.The Nitty Gritty – Cloudflare Resolver. Re-
trieved 05/13/2019 from https://developers.cloudflare.com/
1.1.1.1/nitty-gritty-details/.

[8] Cloudflare. 2019. What is 1.1.1.1? Retrieved 10/05/2019 from
https://www.cloudflare.com/learning/dns/what-is-1.1.1.1/.

[9] Gerald Combs and contributors. 2019. Wireshark. Retrieved
05/11/2019 from https://www.wireshark.org/.

[10] Carlo Contavalli, Wilmer van der Gaas, David C. Lawrence,
and Warren Kumari. 2016. Client Subnet in DNS Queries.
Technical report 7871. (Informational). RFC Editor, (May
2016). http://www.ietf.org/rfc/rfc7871.txt.

[11] AldoCortesi,MaximilianHils, and contributors. 2019.mitm-
proxy - an interactive HTTPS proxy. Retrieved 05/11/2019
from https://mitmproxy.org.

[12] Frank Denis and Yecheng Fu. 2013. DNSCrypt. Retrieved
05/13/2019 from https://dnscrypt.info/.

[13] Mohan Dhawan, Justin Samuel, Renata Teixeira, Christian
Kreibich, Mark Allman, Nicholas Weaver, and Vern Paxson.
2012. Fathom: a browser-based network measurement plat-
form. In Proceedings of the 2012 InternetMeasurementConfer-
ence (IMC). Retrieved 10/02/2019 from https://hal.sorbonne-
universite.fr/hal-00835038/document.

[14] John Dickinson, Sara Dickinson, Ray Bellis, AllisonMankin,
and Duane Wessel. 2016. DNS Transport over TCP - Imple-
mentation Requirements. Technical report 7766. (Proposed
Standard). RFC Editor, (March 2016). http://www.ietf.org/
rfc/rfc7766.txt.

[15] Kevin Fitchard. 2019. USA Mobile Network Experience Re-
port January 2019. Retrieved 05/05/2019 from https://www.
opensignal . com/ reports / 2019 / 01 /usa /mobile - network -
experience.

[16] getdns Team. 2019. getdns/stubby. Retrieved 06/15/2019
from https://github.com/getdnsapi/stubby.

[17] Google. 2019. EDNS Client Subnet (ECS) Guidelines. Re-
trieved 05/13/2019 from https : / / developers . google . com /
speed/public-dns/docs/ecs.

[18] Google. 2019. Migration to anycast and RFC 8484. Retrieved
10/08/2019 from https://developers.google.com/speed/publi
c-dns/docs/doh/migration.

[19] Paul Hoffman and getdns Team. 2017. getdns is a modern
asynchronous DNS API. Retrieved 05/05/2019 from https://
getdnsapi.net/documentation/spec/.

[20] PaulHoffmanandPatrickMcManus. 2018.DNSQueriesover
HTTPS (DoH). Technical report 8484. (Proposed Standard).
RFC Editor, (October 2018). http://www.ietf.org/rfc/rfc8484.
txt.

[21] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane
Wessel, and Paul Hoffman. 2016. Specification for DNS over
Transport Layer Security (TLS). Technical report 7858. (Pro-
posed Standard). RFC Editor, (May 2016). http://www.ietf.
org/rfc/rfc7858.txt.

[22] Michael Kerrisk. 2019. resolv.conf - Linux Manual Page. Re-
trieved 05/30/2019 from http://man7.org/linux/man-pages/
man5/resolv.conf.5.html.

[23] Erik Kline and Ben Schwartz. 2018. DNS-over-TLS Support
in Android P. Retrieved 05/12/2019 from https : / / android -
developers.googleblog.com/2018/04/dns-over-tls-support-
in-android-p.html.

[24] Victor L. Pochat, Tom V. Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczyński, and Wouter Joosen. 2019.
Tranco: A Research-Oriented Top Sites Ranking Hardened
Against Manipulation. In Proceedings of the 26th Network
and Distributed System Security Symposium (NDSS). doi: 10.
14722 /ndss . 2019 . 23386. Retrieved 02/19/2020 from https :
//www.ndss-symposium.org/wp-content/uploads/2019/02/
ndss2019_01B-3_LePochat_paper.pdf.

[25] TV Lakshman and Upamanyu Madhow. 1997. The perfor-
mance of tcp/ip for networks with high bandwidth-delay
products and random loss. IEEE/ACM Transactions on Net-
working (TNET), 5, 3. Retrieved 02/19/2020 from https : / /
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=611099.

[26] Patrick McManus. 2018. Firefox Nightly Secure DNS Exper-
imental Results. Retrieved 05/11/2019 from https : / / blog .
nightly .mozilla .org/2018/08/28/ firefox- nightly- secure-
dns-experimental-results/.

[27] Paul Mockapetris. 1987. Domain names - implementation
and specification. Technical report 1035. (Internet Standard).
RFC Editor, (November 1987). http : / /www . ietf . org / rfc /
rfc1035.txt.

[28] Mozilla. 2019. Document: DOMContentLoaded Event. Re-
trieved 10/02/2019 from https://developer.mozilla.org/en-
US/docs/Web/API/Document/DOMContentLoaded_event.

[29] Mozilla. 2019. nsHostResolver.cpp - mozsearch. Retrieved
10/05/2019 from https : / / searchfox . org /mozilla - central /
source/netwerk/dns/nsHostResolver.cpp#56-72.

[30] Mozilla. 2019. Window: load event. Retrieved 10/02/2019
from https : / / developer .mozilla . org / en - US / docs /Web /
API/Window/load_event.

https://aws.amazon.com/ec2/instance-types
https://aws.amazon.com/ec2/instance-types
http://www.ietf.org/rfc/rfc7540.txt
http://www.ietf.org/rfc/rfc7540.txt
https://dnscurve.org/
http://www.ietf.org/rfc/rfc7626.txt
https://doi.org/10.1145/3355369.3355575
http://eecs.qmul.ac.uk/~boettget/assets/doh-imc19.pdf
https://web.eecs.umich.edu/~harshavm/papers/imc11.pdf
https://web.eecs.umich.edu/~harshavm/papers/imc11.pdf
https://developers.cloudflare.com/1.1.1.1/nitty-gritty-details/
https://developers.cloudflare.com/1.1.1.1/nitty-gritty-details/
https://www.cloudflare.com/learning/dns/what-is-1.1.1.1/
https://www.wireshark.org/
http://www.ietf.org/rfc/rfc7871.txt
https://mitmproxy.org
https://dnscrypt.info/
https://hal.sorbonne-universite.fr/hal-00835038/document
https://hal.sorbonne-universite.fr/hal-00835038/document
http://www.ietf.org/rfc/rfc7766.txt
http://www.ietf.org/rfc/rfc7766.txt
https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience
https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience
https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience
https://github.com/getdnsapi/stubby
https://developers.google.com/speed/public-dns/docs/ecs
https://developers.google.com/speed/public-dns/docs/ecs
https://developers.google.com/speed/public-dns/docs/doh/migration
https://developers.google.com/speed/public-dns/docs/doh/migration
https://getdnsapi.net/documentation/spec/
https://getdnsapi.net/documentation/spec/
http://www.ietf.org/rfc/rfc8484.txt
http://www.ietf.org/rfc/rfc8484.txt
http://www.ietf.org/rfc/rfc7858.txt
http://www.ietf.org/rfc/rfc7858.txt
http://man7.org/linux/man-pages/man5/resolv.conf.5.html
http://man7.org/linux/man-pages/man5/resolv.conf.5.html
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01B-3_LePochat_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01B-3_LePochat_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01B-3_LePochat_paper.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=611099
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=611099
https://blog.nightly.mozilla.org/2018/08/28/firefox-nightly-secure-dns-experimental-results/
https://blog.nightly.mozilla.org/2018/08/28/firefox-nightly-secure-dns-experimental-results/
https://blog.nightly.mozilla.org/2018/08/28/firefox-nightly-secure-dns-experimental-results/
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc1035.txt
https://developer.mozilla.org/en-US/docs/Web/API/Document/DOMContentLoaded_event
https://developer.mozilla.org/en-US/docs/Web/API/Document/DOMContentLoaded_event
https://searchfox.org/mozilla-central/source/netwerk/dns/nsHostResolver.cpp#56-72
https://searchfox.org/mozilla-central/source/netwerk/dns/nsHostResolver.cpp#56-72
https://developer.mozilla.org/en-US/docs/Web/API/Window/load_event
https://developer.mozilla.org/en-US/docs/Web/API/Window/load_event


WWW ’20, April 20–24, 2020, Taipei, Taiwan Austin Hounsel, Kevin Borgolte, Paul Schmitt, Jordan Holland, and Nick Feamster

[31] Mozilla Firefox. 2019. NativeLookup. Retrieved 05/13/2019
from https://dxr.mozilla.org/mozilla-central/source/netwer
k/dns/nsHostResolver.cpp#1349.

[32] Mozilla Firefox. 2019. TRR::DohEncode. Retrieved
05/13/2019 from https : / / dxr . mozilla . org / mozilla -
central/source/netwerk/dns/TRR.cpp#64.

[33] Mozilla Firefox. 2019. TRR::SendHTTPRequest. Retrieved
05/13/2019 from https://dxr.mozilla .org/mozilla- central/
source/netwerk/dns/TRR.cpp#311.

[34] Mozilla Firefox. 2019. TRRLookup. Retrieved 05/13/2019
from https : / / dxr . mozilla . org / mozilla - central / source /
netwerk/dns/nsHostResolver.cpp#1226.

[35] John S. Otto, Mario A. Sánchez, John P. Rula, and Fabián E.
Bustamante. 2012. Content Delivery and the Natural Evolu-
tion of DNS: Remote DNS Trends, Performance Issues and
AlternativeSolutions. InProceedings of the 2012 InternetMea-
surement Conference (IMC). doi: 10.1145/2398776.2398831.
Retrieved 02/19/2020 from https://dl.acm.org/doi/pdf/10.
1145/2398776.2398831.

[36] Paul Schmitt, Anne Edmundson, Allison Mankin, and Nick
Feamster. 2019. Oblivious DNS: Practical Privacy for DNS
Queries. In Proceedings of the 19th Privacy Enhancing Tech-
nologies. doi: 10 . 2478 / popets - 2019 - 0028. Retrieved
02/19/2020 fromhttps://www.degruyter.com/downloadpdf/
j/popets.2019.2019.issue-2/popets-2019-0028/popets-2019-
0028.pdf.

[37] Daniel Stenberg. 2019. Preferences | TRR Prefs. Retrieved
02/19/2020 from https://github.com/badger/TRRprefs.

[38] Daniel Stenberg and contributors. 2019. libcurl - the mul-
tiprotocol file transfer library. Retrieved 05/05/2019 from
https://curl.haxx.se/libcurl.

[39] Mahesh Subramanian, Eric Ye, Ramu Korlipara, and Francis
Smith. 2014. Techniques for measuring above-the-fold page
rendering. US Patent 8,812,648. (2014).

[40] Srikanth Sundaresan, Nick Feamster, Renata Teixeira, and
Nazanin Magharei. 2013. Measuring and Mitigating Web
Performance Bottlenecks in Broadband Access Networks.
In Proceedings of the 2013 Internet Measurement Conference
(IMC). doi: 10.1145/2504730.2504741. Retrieved 02/19/2020
from https://dl.acm.org/doi/10.1145/2504730.2504741.

[41] W3C. 2012. HTTP Archive (HAR) Format. Retrieved
05/05/2019 from https://w3c.github.io/web-performance/
specs/HAR/Overview.html.

[42] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krish-
namurthy, and David Wetherall. 2013. Demystifying Page
Load Performance with WProf. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI). Retrieved 02/19/2020 from https : / /
www.usenix .org /conference/nsdi13 / technical - sessions /
presentation/wang_xiao.

[43] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Alli-
sonMankin, andNikita Somaiya. 2015. Connection-oriented
DNS to Improve Privacy and Security. In Proceedings of the
36th IEEE Symposium on Security & Privacy (S&P). doi: 10 .
1109 / sp . 2015 . 18. Retrieved 02/19/2020 from https : / /
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7163025.

https://dxr.mozilla.org/mozilla-central/source/netwerk/dns/nsHostResolver.cpp#1349
https://dxr.mozilla.org/mozilla-central/source/netwerk/dns/nsHostResolver.cpp#1349
https://dxr.mozilla.org/mozilla-central/source/netwerk/dns/TRR.cpp#64
https://dxr.mozilla.org/mozilla-central/source/netwerk/dns/TRR.cpp#64
https://dxr.mozilla.org/mozilla-central/source/netwerk/dns/TRR.cpp#311
https://dxr.mozilla.org/mozilla-central/source/netwerk/dns/TRR.cpp#311
https://dxr.mozilla.org/mozilla-central/source/netwerk/dns/nsHostResolver.cpp#1226
https://dxr.mozilla.org/mozilla-central/source/netwerk/dns/nsHostResolver.cpp#1226
https://doi.org/10.1145/2398776.2398831
https://dl.acm.org/doi/pdf/10.1145/2398776.2398831
https://dl.acm.org/doi/pdf/10.1145/2398776.2398831
https://doi.org/10.2478/popets-2019-0028
https://www.degruyter.com/downloadpdf/j/popets.2019.2019.issue-2/popets-2019-0028/popets-2019-0028.pdf
https://www.degruyter.com/downloadpdf/j/popets.2019.2019.issue-2/popets-2019-0028/popets-2019-0028.pdf
https://www.degruyter.com/downloadpdf/j/popets.2019.2019.issue-2/popets-2019-0028/popets-2019-0028.pdf
https://github.com/badger/TRRprefs
https://curl.haxx.se/libcurl
https://doi.org/10.1145/2504730.2504741
https://dl.acm.org/doi/10.1145/2504730.2504741
https://w3c.github.io/web-performance/specs/HAR/Overview.html
https://w3c.github.io/web-performance/specs/HAR/Overview.html
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://doi.org/10.1109/sp.2015.18
https://doi.org/10.1109/sp.2015.18
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7163025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7163025

	Abstract
	Introduction
	Background
	Method
	Metrics
	Experiment Setup
	Limitations

	Measurement Results
	DNS Query Response Time
	Page Load Time
	Effect of Network Conditions
	Trends Across Vantage Points

	Discussion
	Opportunistic Partial Responses
	Wire Format Caching
	EDNS Client-Subnet

	Related Work
	Encrypted DNS Transports
	DNS and Web Performance

	Conclusion

